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ABSTRACT
THE LIGHTHILL CORRECTION TO THE MORISON EQUATION

When a hydrodynamic flow field is known, the in-line force on
a submerged slender structural element is usually calculated using
the Morison equation. According to this expression the total in-
line force consists of two components: an inertia force of
potential origin and a drag force due to viscosity effects.

Primarily, this report investigates a second order correction
term to the Morison equation that is of potential origin and was
proposed by Sir James Lighthill. This correction is due to the
horizontal gradient of the in-line velocity, which causes the
dynamic pressure to vary around the cylinder. The Lighthill
correction is derived theoretically for the condition of finite
water depth.

Two sets of data were used to determine the effect of the
Lighthill correction quantitatively. The first set consisted of
periodic wave data and the second set consisted of random wave
data. Each set of data was analyzed to evaluate the drag and
inertia coefficients used to calibrate the Morison equation and
also to determine the effect of the Lighthill correction. It was
found that the inertia coefficients based on the measured flow
properties were in some casesbsignificantly greater than the ideal
potenﬁial flow value of 2.0. The theoretical calculation of the
force coefficients was investigated for low Keulegan-Carpenter

numbers, but it was found that the normally adopted procedure of
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linearizing the boundary layer equation used in this calculation
was not applicable for conditions experienced in these tests, and
in general appears not to be applicable to ocean data. From the
analysis of both the periodic and the random data it was found that
the addition of the Lighthill correction term did not improve the
Morison equation significantly; in most cases the Morison equation
without the Lighthill correction provided a better fit to the
measured forces.

Another correction, due to flow separation effects and based
on Sarpkaya's 1981 work, is also investigated. The analysis
suggests that a correction of the Sarpkaya type can be useful as
a curve fitting device to improve the fit of the Morison equation

to any given set of measured data.
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CHAPTER ONE

INTRODUCTION

Over the past fifteen years offshore platforms have increased
by an order of magnitude in their size, complexity and cost. The
loading imposed on slender cylindrical members of an offshore
structure, subjected to forces induced by wave and current,
represents one of the major design considerationé and has been the
focus of extensive experimental and theoretical research over the
past 35 years.

Firstly, to evaluate the flow-induced forces on a structure
it is required to know the surrounding hydrodynamic flow field.
Once the appropriate flow field is defined the in-line force on a
slender cylinder is usually calculated by using the well-known
Morison equation.

According to this expression, proposed by Morison, O'Brien,
Johnson and Schaaf in 1950, the total in-line force on a cylinder
immersed in a fluctuating flow consists of two components: an
inertia force, due to the effects of irrotational (potential) flow,
and a dfag force, due to viscosity (skin friction and flow
separation) effects. The inertia force is analogous to the force
a body experiences in uniformly accelerated flow, and is assumed
to be proportional to the flow acceleration. The drag force is
analogous to the drag on a body subjected to a steady flow and is
assumed to be propértional to the square of the time dependent flow

velocity, where the force has the same direction as the velocity.



The Morison equation is calibrated with two empirical coefficients
which are referred to as the inertia and drag coefficient and
which are functions of the flow conditions. A great deal of work,
both theoretical and experimental, briefly reviewed in Chapter Two,
has been performed to determine the values of the inertia and drag
coefficients, and to seek possible improvements to the Morison
equation. There appears to be a consensus that the Morison
equation, though imperfect, is a good point of departure for
modeling the hydrodynamic forces on cylinders, énd that it would
be better to improve the equation with correction terms rather than
devise a completely new one.

Keulegan and Carpenter (1958) were the first researchers to
propose a correction to the Morison equation. An analysis similar
to but more elaborate than that of Keulegan and Carpenter was
reported recently by Sarpkaya (198la, 1981b). The corrections of
Keulegan and Carpenter and Sarpkaya are aimed essentially at
accounting for vorticity effects. It is only recently that the
question of corrections associated with irrotational (potential)
flow effects was raised. In his keynote address to the 1979
Conference on the Behaviour of Offshore Structures (BOSS), Sir
James Lighthill showed that the force associated with the
irrotational flow includes, in addition to the linear inertia term
of the Morison equation, a nonlinear effect of potential origin due
to the extensional motion (that is, the horizontal gradient of the
the in-line component of the flow velocity). We refer to this
effect as the Lighthill correction. Lighthill also noted that if

the total force on a cylinder is expressed as a sum of the two



Morison equation terms only, then the Lighthill force, which is due
to potential flow effects, is automatically incorporated into the
nonlinear drag term, which is purportedly due solely to viscosity
effects. Therefore, the Morison equation leads to an erroneous
estimation of the force due to viscosity. The degree to which the
error is significant depends upon the ratio between the Lighthill
force and the actual Morison component associated with viscosity
effects. This latter component is responsible for the bulk of the
damping that controls the dynamic response of compliant offshore
structures to fluctuating wind [Simiu and Leigh (1983) and Cook et
al. (1986)]. The question of the extent to which corrections of the
Lighthill type might affect the estimation of this component is
therefore of significant practical interest in this context, and
this provided the initial motivation for this work.

The primary object of this work is to investigate the
significance of the Lighthill correction in quantitative terms. In
Lighthill (1979) the theoretical developments pertaining to the
Lighthill correction are presented for the case of flows with
infinite water depths. Since the data used in this work for the
quantitative assessment of the Lighthill correction are
characterized by relatively high wave-height to water-depth ratios,
derivations of the expression for the Lighthill correction in flows
of finite depth are presented in Chapter Three. Also, Chapter Three
presents the developments concerned with corrections for the effect
of flow separation, along the lines of Sarpkaya's 1981 work.

Three sets of data were obtained for the purpose of

investigating the quantitative significance of the Lighthill



correction. The first set was provided by the Naval Civil
Engineering Laboratory (NCEL), and consisted.of'periodic flow force
and flow measurements obtained in a wave tank. A second set was
provided by the Delft Hydraulics Laboratory (DHL), and consisted
of force and flow measurements obtained in a wave tank under random
wave flow conditions. The third set consisted of full scale data
obtained at the Christchurch Bay installation by the British
Maritime Technology (BMT). Because the BMT data were not
sufficiently complete to allow a conclusive analysis to be
performed, they were not used in the investigation of the Lighthill
correction. The experimental setup and data sets listed above are
described in Chapter Four.

Chapters Five and Six, respectively, evaluate the magnitude
of the Lighthill correction for both the NCEL and DHL data. In the
case of the NCEL data, which corresponds to periodic wave flow, the
variation of the the inertia and drag coefficients is investigated.
In addition corrections for flow separation effects of the type
described by Sarpkaya (198la, 1981b) are evaluated and commented
on. Because the Sarpkaya correction can be calculated only for
periodic flows, it was not applicable to the DHL data.

Chapter Seven summarizes the main conclusions and discusses
future work that is required to obtain a more complete answer to

the wave loading problem.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction
In the reviews on the fluid induced loadings on structural
Vmembers [Hogben et al. (1977), Sarpkaya and Isaacson (1981), Wilson
(1984), and McCormick (1973)] the process of finding the wave
forces involves two distinct stages. The first stage is the
description of the wave environment whereby the flow properties can
either be measured or calculated using an appropriate wave theory.
The second stage involves relating these wave flow properties to
the forces acting on a body. This literature review deals with the
broad subjects of waves and wave hydrodynamics before trying to
describe the more specialized area of fluid loading.

A considerable amount of work has been done in theoretically
describing the flow properties of wave motion. The theories vary
from the relatively simple linear theory which gives approximate
solutions and can be readily applied, to the more complex higher
order theories, which lead to more accurate results but are
computationally more involved.

The loading on structural elements has been of considerable
interest since the first offshore facility was proposed. Morison
et al. (1950) proposed a simple formula expressing the total force
as the sum of a drag and inertia component with two semi-empirical

coefficients calibrating the formula. Since then a substantial



amount of work has been done on evaluating the two empirical
coefficients in the Morison equation!

The Morison equation has been criticized as oversimplifying
the fluid mechanics of the loading but an alternative rigorous
approach has not been.developed to date. To represent the fluid
mechanics more closely, rather than suggesting a completely new
relationship, wvarious authors have proposed the addition of
correction terms to the Morison equation [for example, Lighthill
(1979) and Sarpkaya (198la, 1981b)]. This chapter reviews wave
hydrodynamic fundamentals relevant to the application of the
Morison equation; discusses the Morison equation and its
limitations; describes experimental and theoretical work aimed at
determining the Morison equation coefficients; reviews information
on the treatment of the wave loading problem under random flow
conditions and in the presence of current; and summarizes
contributions by Lighthill (1979) and Sarpkaya (198la, 1981b) on

correction terms aimed at improving the Morison equation.

2.2 Wave Hydrodynamics

The pioneering work in wave hydrodynamics occurred in the
latter half of the nineteenth century. The linear wave theory was
first introduced in 1845 and in 1847 Stokes wrote an important
paper (reprinted with a supplement in 1880) treating the subject
in more detail.

Stokes assumed that the waves propagate with a constant

velocity, without change of form and that the motion could be



described in two dimensions. It was further assumed that the fluid
was homogeneous, incompressible, inviscid and of uniform depth.

The motion, being assumed to have been generated from rest,
was set out as a solution of the Laplace equation (continuity
equation) subject to a number of boundary conditions throughout the
fluid. The first boundary condition is at the rigid bottom, on
which the fluid sits, and imposes a no vertical flow condition on
the fluid. Two further boundary conditions are applied at the free
surface. One condition states that the fluid particles initially
at the surface continue to be at the free surface throughout the
motion. The other is that the pressure at the free surface,
expressed in terms of Bernoulli’s equation, is equal to the
atmospheric pressure. These three boundary conditions are known
as the bottom, kinematic free surface and dynamic free surface
boundary conditions, respectively.

The problem was initially solved to first order by neglecting
the slope of the free surface, as well as the velocity squared
terms in Bernoulli’s equation. In addition, due to the assumption
of small amplitude waves the free surface boundary conditions were
applied at the still water level rather than at the unknown free
surface. This analysis is commonly known as small amplitude or
linear wave theory. The derived velocity potential gives the result
that the particles travel in closed elliptic orbits where the
ellipticity depends upon the depth of the water (for example, in
deep water the particle orbits are circular and in shallow water
the orbits are ellipses) where the ratio of major axis to minor

axis increases with decreasing depth. The boundary conditions yield



the dispersion relation which shows that the wave speed (the
celerity, ¢ = w/k) is a function of the wavenumber and water depth
but is independent of the wave height. The linear theory forms the
basis of ocean engineering practice as it is simple to apply and
can be used for all water depths, whereas other theories generally
only apply over limited depths. Stokes extended his analysis to
the second order by substituting the first order result into the
previously neglected second order terms. The free surface boundary
conditions were applied at the actual free surface by expanding the
actual conditions about the still water level using a Taylor series
expansion, that is,

$(z) =0 at z = g 2.1
may be expanded to

¢ 1 3%¢
¢(z) +np —+ - 92 — 4+ ... =0 at z = 0 2.2
dz 2! 3z?

where ¢(z) 1s the velocity potential a vertical distance z from the
still water level and 5 is the vertical distance of the free
surface from the still water level. The second order solution
consists of the first order solution and a second order term with
frequency equal to twice the frequency of the first order term. The
second order solution has the same dispersion relation as the first
order solution but instead of the fluid orbits being closed there
is a gradual drift in the positive x direction.

By introducing a perturbation assumption where all the
variables can be expanded in a perturbation parameter it is
possible to extend the analysis to any higher order of

approximation. However, at higher orders the analysis involves



increasingly lengthy mathematics. Skjelbreia and Hendrickson (1960)
have given the Stokes expansion to the fifth order and explicit
expressions for the coefficients are given in tabular form for
various depth to wavelength rétios.

One problem with the Stokes expansion is the non-convergence
of the series for steeper waves. Schwartz (1974) reformulated the
problem using expansion variables different from those adopted by
Stokes. He then obtained an accurate solution to the steep wave
case using a computer to perform the requisite algebraic
operations.

Korteweg and deVries (1895) developed the cnoidal wave theory,
which is applicable to shallow water. Wave parameters are
formulated in terms of the Jacobian elliptic function (cn) hence
the term "cnoidal". A limiting case of the cnoidal wave corresponds
to the case where the wavelength approaches infinity. This leads
to the solitary wave which was first studied mathematically by
Rayleigh (1876). Other wave theories include the linearized long
wave theory [Gerstner (1802)] and the Stream Function Theory [Dean
(1965)]. All these theories are discussed in considerable detail
in Sarpkaya and Isaacson (1981).

A wave theory must be chosen so that it is appropriate to the
wave conditions under consideration. LeMehaute (1969, 1976)
produced a plot, see Figure 2.1 , that shows the approximate range
of validity of various wave theories. The graph is not based on any
quantitative investigation but can be helpful in initial
calculations to determine whether a simple theory, such as linear

theory, can be used.
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2.3 Hydrodynamic Loads
2.3.1 The Morison Equation

The Morison equation [Morison et al. (1950)] is widely used
in ocean engineering as an expression for wave-induced forces on
structural members. In 1950 Morison et al. wrote: "The force
exerted by unbroken surface waves on a cylindrical object, such as
a pile, which extends from the bottom upward above the wave crest,
is made up of two components, namely:
1. A drag force proportional to the square of the velocity which
may be represented by a drag coefficient having substantially the
same value as for steady flow, and
2. A virtual mass force proportional to the horizontal component
of the acceleration force exerted on the mass of water displaced
by the pile. These relationships follow directly from wave theory
and have been confirmed by measurements in the Fluid Mechanics
Laboratory of the University of California, Berkeley." The authors
proposed the following expression for the force exerted on a
differential section, dz in length,

prD? 3u pD

— +Cd — u?] dz 2.3
4 at 2

dF = [Cm

where D = pile diameter

p = water mass density

Cm = coefficient of mass

Cd = coefficient of drag
u = horizontal component of the fluid velocity
du/dt = local acceleration of the water particle
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The term u? was later changed to u |u| to take into account
the fact that the drag force is acting in the direction of the
fluid velocity. Further generalization replaced the term aD?/4 by
a displaced volume per unit length V, and the term D by a projected
frontal area per unit length A. Some authors have proposed the use

in the Morison equation of the total acceleration of the flow

du du Jdu du du
— = —tuU— 4V —+W— 2.4
dt at ax 8y dz

or in two dimensional flow

du du du du
_—m et U — + W — 2.5
dt at ax iz

in lieu of the local acceleration 3u/dt.

To first and second order respectively, equation 2.5 becomes

du, ou,

—_— . —— 2.6
dt at

du, du, du, du,

—_———tu — +w — 2.7
dt at ax az

Isaacson (1979) noted that the force due to the term w du/dz
would not include any added mass effects. Therefore, the expression
for the inertial force in the x direction is given by

pnD? du du prD? du
F, =

% (Cm — + Cmu— ) + — 2.8
at dx 4 3z

Generally, the convective acceleration term is negligible,
[El1lix (1984), Sarpkaya and Isaacson (1981)], and this justifies
the use for practical purposes of the local acceleration. When the
generalizations are made to the Morison equation it can finally be

written as
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du 1
dF = [Cm pV ~— + — Cd pA u |u|ldz 2.9
dt 2

Morison et al. recognised that their equation was approximate
and implied that it was calibrated with the two empirical constants
Cm and Cd. The authors stated that "The reader is cautioned that
these preliminary results are applicable only to single piles
without bracing and are likely to be modified ....... This paper
is essentially a preliminary report submitted at this time because
of the current importance of wave forces in the design of offshore
structures."

The Morison equation was very influential and many trusted it
blindly. The 1limits and capabilities of the equation were not
recognized until many years later. Some of the limitations of the
Morison equation are:

1. It applies only to the prediction of in-line forces

2. It should be used only for cylinders with diameter to flow
wavelength ratio less than about 0.2 so that the effects of the
cylinder on the waves can be neglected.

3. It does not apply uniformly well for all ranges of Reynolds
number (Re) and Keulegan-Carpenter number (KC) and seems to give
the best results for flow regimes in the inertia dominated and
drag dominated regions (that is, KC < 6 and KC > 20
respectively), where modeling problems associated with vorticity
are less difficult. These limits vary and are approximate averages
of values proposed by different researchers. Even in controlled
laboratofy conditions it has been found that there can be

relatively large discrepancies between the measured forces and
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forces given by the Morison equation in the region 6 < KC < 20.
This region was termed by Sarpkaya (1976¢c) the disturbance
sensitive region of vortex formation where the flow and hence the
in-line force is affected by fractional or incomplete vortex
shedding. In deep water there is a depthwise variation of the
Keulegan-Carpenter number. This can lead to a situation where if
KC is high there is a well developed eddy structure near the
surface, but there are relatively few eddies near the bottom. There
will tend to be vertical diffusion of the eddies so that the forces
acting near the bottom of the cylinder will be influenced by the
conditions near the surface. Hence, under conditions that prevail
in the ocean the use of drag data derived from simple two-
dimensional situations cannot be expected to yield fully reliable
results. Therefore, due to wake structure and the resulting
interaction effects, studied by Bidde (1971), doubts about the
reliablity of the Morison equation in deep water should be raised.
4. The effect of the axial pressure gradient nor the transverse
force are taken into account.

5. It cannot adequately deal with the effects of orbital motion,
omnidirectionality of the waves and/or current and it has no
provision to deal with vortex and wake-return effects (history of
the motion).

Finally, the Morison equation was proposed, and its validity
was investigated, primarily on the basis of tests conducted for
simple flow situations (standing waves in a rectangular basin as
in Keulegan and Carpenter (1958), or sinusoidal planar flow in a

U-shaped water tunnel as found in Sarpkaya (1976a, 1976b, 1976c,
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19764, 198la, 1981b). It is only recently that careful and
systematic attempts have been reported aimed at verifying, under
controlled laboratory conditions, the wvalidity of the Morison
equation in random, as opposed to harmonic or almost harmonic waves
[Vugts and Bouquet (1985) and Bearman et al. (1985)].

As mentioned earlier there appears to be a consensus that the
Morison equation, though imperfect, is a good point of departure
to model the hydrodynamic forces on cylinders, and that it would
be bettef to improve the equation with correction terms rather than
devisa a completely new one. Among the more notable attempts to
improve upon the Morison equation by adding additional correction
terms are those reported by Lighthill (1979) and Sarpkaya (1981la,
1981b).

With the widespread use of the Morison equation a great deal
of work has been done on evaluating the appropriate values of the
force coefficients. A review of the work is presented in the

following two sections.

2.3.2 Experimental Work Concerning the Morison Equation
Coefficients.

A comprehensive review of the work up until 1977 is given in
BSRA Report No. W.278 (1976) and Hogben et al. (1977). The
Appendices of the the BSRA Report contain summaries of all
references that contain explicit values of Cd and Cm intended for
use in the Morison equation, or that are otherwise relevant to the
wave force problem. Only a few of these papers will be reviewed

below.
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Prior to 1975 the only data obtained under controlled
laboratory conditions were those reported by Keulegan and Carpenter
(1958), who performed a series of tests concerned with the
experimental evaluation of the wave force coefficients. They did
not detect any dependence of the drag and inertia coefficients Cd
and Cm upon the Reynolds number but did note a dependence of the
coefficients upon a period parameter. This period parameter was
subsequently termed the Keulegan-Carpenter number, KC, and is a
ratio of the measure of the path length of a fluid particle during
a wave period, T, to the body diameter, D, (KC = U T/D).

The Keulegan-Carpenter number is an important parameter in
determining the relative magnitudes of the inertia and drag forces.
If the path length is large compared to the body diameter (high KC
values) then the condition approaches that of a steady drag
situation and drag dominates. Generally, at high KC values there
is a continuous von Karman street of vortices being shed from
alternate sides of the cylinder. The drag coefficient tends to be
constant and approaches its steady flow value. At low values of KC
drag development will be negligible in comparison to the inertia
forces and the total force is inertia dominated. Keulegan and
Carpenter’s results indicate that, for a cylinder, there is a
critical region around KC = 15 where the inertia coefficient is a
minimum and the drag coefficient is a maximum. At very low KC
values there is no separation and hence the drag coefficient is
relatively low and the inertia coefficient should approach its

ideal potential flow value of 2.0.
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Keulegan and Carpenter could not find any dependence between
the inertia or drag coefficient and Reynolds number. Sarpkaya
(1976a) found that there is in fact a dependence on the viscosity.
Since the effect of viscosity is relatively small and both Re and
KC involve the velocity, Sarpkaya (1976a) recommended that a
viscous frequency parameter, 8, (8 = Re/KC = D?/vT) be used in lieu
of the Reynolds number.

In a series of extensive experiments Sarpkaya (1976a,1976b)
used a U-shaped tube to produce simple harmonic oscillations of
water past a fixed circular cylinder. This type of flow has simpler
flow properties than is the case in wave flow, in particular,
horizontal spatial gradients are absent. From a fundamental
research point of view the simplicity of the flow properties was
viewed as being an advantage.This approach has allowed the force
coefficients to be determined over a wide range of conditions.
Sarpkaya's data show clearly that the force coefficients depend on
the Keulegan-Carpenter number, the Reynolds number and the relative
roughness of the cylinder surface. Figures 2.2 and 2.3 show the
variation with KC of Cd and Cm respectively, for five different
values of the viscous frequency parameter, 8. Figures 2.4 and 2.5
show that Cd and Cm do not vary significantly for Re smaller than
about 20,000. This may explain the conclusions reached by Keulegan
and Carpenter.

Bearman et al. (1979) also measured the force coefficients due
to plane oscillating flow in a U-tube. The results of their Cd
values are at variance with those of Sarpkaya. The authors

reported problems with their experimental setup which may account
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for the difference between the two sets of data. The Cm values
showed much less variation.

Garrison et al. (1977) studied the variation of the two force
coefficients with Re in which the cylinder was oscillated through
the water (that is, no Froude-Krylov force was present and the
inertia force was due solely to added mass effects). An advantage
of this setup was that the oscillation speed could be varied and
the amplitude could be left unchanged. Hence, a range of Reynolds
numbers could be obtained for constant values of KC. The results
showing the variation of Cd and Cm with Re were essentially the
same as those obtained by Sarpkaya.

Chakrabarti et al. (1976) and Chakrabarti (1980) performed a
series of wave tank tests with fixed vertical cylinders. The forces
were measured over 0.3048m (1 ft) sections and the wave properties
were calculated using an appropriate wave theory. For the earlier
tests the flow properties were calculated using linear wave theory
and for the later tests it was found that the fifth order Stream
Function Theory [Dean (1965)] gave the best fit to the surface
profile. 1In each set of results the Keulegan-Carpenter number,
Reynolds number and force coefficients were calculated. The results
were compared to those obtained by Sarpkaya (1976b) for a smaller
range of KC. Chakrabarti (1980) and Chakrabarti et al. (1976) found
that the differences between the Cd values from their tests and
those obtained by Sarpkaya were small in the range of KC < 40.
However, the Cm values measured in the wave tests were generally
higher than those obtained by Sarpkaya when KC < 15 and values were

obtained that were considerably higher than the ideal potential



18

value of 2.0. In both cases there was a severe limitation
#ssociated with the Reynolds number. The range of the Reynolds
number was too small and the scatter of the results too great for
any conclusion to be drawn on the wvariation of the force
coefficients with Re.

There have been several studies carried out to measure the
forces exerted on a test structure under actual sea conditions.
These have included the Ocean Test Structure of Exxon and the
Christchurch Bay Tower of the British Maritime Technology (BMT),
U.K. (formerly the National Maritime Institute).

The . Exxon ocean test structure was a highly instrumented
20 x 40 x 120 ft platform which was installed in 66 ft of water in
the Gulf of Mexico. Data obtained included local wave forces on
clean and roughened sensors, the local wave properties and total
loads on the structure [Heideman et al. (1979)]. Force coefficients
were derived using two methods. The first was a least squares error
procedure for each half cycle. The second was the evaluation of Cd
over short time intervals where the flow was drag dominated and of
Cm over short time intervals where the flow was inertia dominated.
The coefficients exhibited large scatter particularly for KC < 20.
The scatter decreased consideraﬁly in the range 20 < KC < 45, It
was not clear whether this was a genuine reduction in scatter or
just the effect of the smaller number of data points obtained in
the drag dominated region. Heideman et al. (1979) attributed the
scatter in the drag and inertia coefficients to random wake
encounters. One of the main conclusions they reached was that the

Morison equation with time invariant coefficients could be made to
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fit measured local forces satisfactorily over individual wave
cycles.

The data from the Christchurch Bay tower has been analysed by
Pearcey and Bishop (1979) and Standing (1980) using a mean square
analysis. The inertia and drag coefficients were determined using
one or more pairs of equations obtained from different samples of
the measured histories. Pearcey and Bishop found that the force
coefficients were quite stable for time intervals greater than
about 4 minutes. Standing reported a wave by wave analysis of
select sections of the data, and tentatively concluded that the
Morison equation provided a good fit to the measured in-line force.
The force coefficients obtained by Standing were similar to those
obtained by Bishop (1978). It is noted that the Christchurch Bay
results were plotted against an effective Keulegan-Carpenter
number, proposed by Bishop (1978) for use with random waves, and
defined as

2n u® (t)

KC* = 2.10
0.866D a? (t)

where u(t) is the velocity and a(t) is the acceleration. This
reduces to the usual definition KC = u, ,, T/D in periodic waves of
form u = u ., cos wt.

There appeared to be significant differences in the
Christchurch Bay force coefficients due to the effect of current.
Bishop (1979) noted that "the variations of the coefficients can
be attributed to genuine hydrodynamic effects but also to
imperfections in the experimental and analysis techniques. No

attempt has been made to attribute the variations to individual
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causes ....". Sarpkaya (1981b) stated that there did not seem to
be any possibility of using the BMT (formerly the NMI) data in a
meaningful way for a critical assessment and improvement of the
Morison equation.

Similar problems of interpretation commonly arise with full
scale data which may involve considerable uncertainty. The three-
dimensionality of the flow and the fact that the conditions cannot
be controlled or repeated adds to the difficulties of analysis and
interpretation.

Sarpkaya (1976a,1976b) conducted a series of tests on sand-
roughened cylinders in harmonic flow. The roughness was achieved
by attaching sand grains to the cylinder surface. A range of
relative roughness, defined as the ratio of mean sand particle
size, k, to cylinder diameter, D, of 1/800 to 1/50 was used. The
effect of the relative roughness on the force coefficients was very
noticeable. The drag coefficients were found not to vary
significantly from the smooth cylinder value at very low Reynolds
number. The drag coefficient reached a maximum at a lower Reynolds
number for the rough cylinders than for the smooth cylinders.
Beyond this critical Reynolds number the drag coefficient increased
rapidly until it reached a steady value which was considerably
higher than for smooth cylinders. The inertia coefficient reached
a maximum at the Reynolds number corresponding to the minimum Cd
and then asymptotically decreased. Both the drag and inertia
coefficients were independent of the relative roughness for
roughness Reynolds numbers (defined as Re, =uD. /v wvhere D =

diameter of the roughness element) larger than about 300. Sarpkaya
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states that these results and conclusions are wvalid only for
cylinders in harmonic flow with zero mean velocity within the range

of variables Re., KC, k/D investigated.

rs

Gaston and Ohmart (1979) conducted experiments to examine the
effect of surface roughness on vertical cylinders under wave
loading. The results obtained showed that the drag coefficient
almost doubled in the change from smooth to rough cylinders. Most
of the increase in Cd occurred for the initial transition between
smooth and rough cylinders, a lesser effect was observed for
increasing roughness. The inertia coefficient was found to be less

sensitive to surface roughness, with the difference in Cm between

the rough and smooth cylinders being only a few percent.

2.3.3 Theoretical and Experimental Work on the Morison Equation

Coefficients for Low KC Numbers

Stokes (1851) was the first to show that the force on a sphere
or cylinder in oscillatory, viscous, unseparated flow is dependent
on both the Reynolds number and on a parameter that can be
expressed in terms of the Keulegan-Carpenter number. His solution
in which nonlinear terms in the Navier-Stokes equation are
neglected is given in the form of a series expansion in powers of
B '/2, where B is the viscous frequency parameter (8 = Re/KC =
D2/vT). For a circular cylinder in flow with a spatially uniform

velocity u = U, cos wt the force F per unit length of cylinder is

found to be

F=0.25n pD? wU, (k sin wt - k' cos wt) 2.11
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where k = 1 + 4(xf) /2 &+ (nB)~3/2 4+ . and

k' = 4(np) 12 + 4(np) L - (nB) /2

As noted by Bearman et al. (1985) and Sarpkaya (1986) for a
harmonic flow, over a flow cycle |cos wt| cos wt may be
approximated by (8/3m)cos wt. Equating the inertia and drag
coefficients in the Morison equation to k and k', respectively,

yields the following expressions for the inertia and drag

coefficients
Cm = 2 + 4(nB)"1/2 4+ O(npB)~3/2 2.12
3 %3
Cd = [((xB)"1/2 4+ (xB)~1 + O(nB)~3/2) 2.13
2 KC

Bearman et al. (1985) obtained the same result by adopting a
modern boundary layer approach. Their analysis was based on the
linearized boundary layer equations as given by Batchelor (1970),
Lin (1957) and Schlichting (1960). The total non-steady boundary
layer equations are obtained as follows. The velocity components
u and v within the boundary layer, and the free stream velocity

U(x,t) are separated into mean values and oscillatory components,

that is,
U(x,t) = U(x) + U, (x,t) 2.14a
u(x,y,t) = u(x,y) + u, (x,y,t) 2.14b
v(x,y,t) = ;(x,y) + v, (x,y,t) | 2.14c
P(X,t) = p(x) + p, (x,t) 2.14d

These components are substituted into the Prandtl boundary layer
equations and the total nonlinear non-steady boundary layer

equation as given by Lin and Schlichting is



23
du, _ 8w, _ du, du du du, du,
+ u + v tuy —+v, —+u — v, — +

at ax ay ax dy éx 3y

du, ou,

uy — + Vv, — =

ax 8y
au, __ au, au, au, au, 3%y,
— +U, — +U — + U] — -U — +v 2.15
at Ix ax ax ax ay?

Lin, Schlichting and Bearman et al. then simplify this equation by

retaining only the three linear terms. This leads to

du, U, a%y,
—_— - — 2.16
at at 3y?

Schlichting (1960) showed that in practice this simplification

restricts the theory to oscillatory flows with high frequencies.

It should be noted that such flows are not representative of those

experienced in experimental tests or in the ocean.
Wang (1968) extended Stokes’ analysis using the method of

inner and outer expansions to O(x8) ®/2 and obtained a solution
that is valid for KC << 1, ReKC << 1 and B >> 1. While this
solution is a refinement with respect to the solution of Stokes or
Bearman et al. it is still restricted to flows with high frequency

~oscillations. Wang obtained the expressions

Cm = 2 + 4(nB)"1/2 4 (np)-3/2 2.17
33

Cd = — [(nB) 12 5+ (nB)"1 - 1/4(nB)"3/2] 2.18
2KC

For real flow situations the terms O(xf ! and O(xB8) %/2 are
extremely small. In all of the investigations done on this work the
frequency parameter is assumed to be moderately high and further

work needs to be done investigating the analysis for high g8 (low
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frequency) flows. This is where the nonlinear terms, which are
neglected in the previous work on the nonsteady boundary layer
equations, become significant.

Up until the 1980’'s very little work had been done on the
variation of Cm and Cd for small values of KC (less than 4).
Sarpkaya (1986) states "Practically all the laboratory and ocean
based experiments have been conducted for KC larger than about &
and it is assumed that Cd for KC < 4 is unimportant and Cm has the
theoretical potential flow value of the body shape tested."

Results of experimental investigations by Sarpkaya (1986) are
shown in figures 2.6 and 2.7. Based on figure 2.6, Sarpkaya
identified four different flow regimes:

1. 0 < KC < Ker (Ker = 0.75 for B = 1035) where Ker is the value
corresponding to the transition from laminar to unstable boundary
layer flow. This was referred to by Sarpkaya as the Stokes-Wang
regime, and the flow is laminar, attached and stable.

2. Ker < KC < Kmd (Kmd = 1.6 for B = 1035) where Kmd is the KC
value corresponding to flow separation and the onset of turbulence.
The minimum Cd occurs at this value. In this range the laminar flow
becomes unstable though laminar. The instability corresponds to the
formation of mushroom shaped vortices of the type discussed by
Honji (198l). See figure 2.8. Hall (1984) presented a stability
analysis motivated by Honji’s observations and found that at and
near the onset of the instability the flow remains laminar.

3. Kmd < KC < K*. The effects of flow separation and vortex
shedding become increasingly important and Cd increases with

increasing KC.
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4. KC > K*. In this region Cd decreases as KC increases and the
number of shed vortices and flow modes increase. Most of the data
obtained up until the 1980’s was in this region.

It is noted in figure 2.6 that for moderately high 8
(B = 1035), that is, for relatively high frequencies of the flow
oscillations, the Wang prediction (solid 1line) appears to be
reasonable for 0.35 < KC < 0.7. This suggests that for moderately
high B the linearization in Bearman et al.’s work is acceptable.
Figure 2;7 does not contain data at sufficiently low KC numbers to
confirm (or invalidate) the existence of the 0 < KC < Ker and
Ker < KC < Kmd regions in the case of the higher g value
(B =~ 11240).

The question arises whether the Bearman et al. model, which
neglects nonlinear terms in the boundary layer equation, or the
Wang model is indeed realistic for flows with low frequency
oscillations (high g numbers). This question is legitimate for the
following reason. At low KC numbers, Bearman et al.’s model and
Wang’s model predicts Cm values that exceed the ideal potential
flow value.Cm = 2 by only negligible amounts. However, as mentioned
earlier, according to Chakrabarti, for low KC numbers values of Cm
as large as 2.5 were estimated. It may be surmised that such values
could be predicted by a model that takes nonlinearities into
account for flows where KC < 0.35, say. Such a model might thus
predict Cd values different from those yielded by the Bearman et
al. model or the Wang model. This suggests that research is

warranted on the inertia and drag coefficients for nonlinear
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boundary layer equations in flows with low frequency oscillations,
such as are encountered in practice.

The practical value of dependable information concerning
hydrodynamic damping at low KC numbers was noted in investigations
of the dynamic response of compliant offshore structures to wind
loads. Indeed, Simiu and Leigh (1983) and Cook et al. (1986) found
that the bulk of damping that controls the dynamic response of
compliant offshore platforms to fluctuating wind is due to the
viscosity effects of the hydrodynamic loading. Numerical
simulations of the response of a typical tension leg platform were
performed for water depths of 600m and 150m. For 600m deep water,
the equivalent linear damping ratios were found to be between 25
percent and 55 percent corresponding to Cd = 0.1 and Cd = 0.6,
respectively. For 150m deep water the estimatéd equivalent linear
damping ratios were found to be between 10 percent and 20 percent‘
for Cd =~ 0.1 and Cd = 0.6, respectively. These papers showed that
even for low drag coefficients the equivalent damping ratio is
still significant enough to preclude dynamic amplification due to
wind.

At present no data are available on the magnitude of Cd for

the low KC numbers (KC < 1) and high Reynolds numbers (Re =~ 10%)

typical of tension leg platforms columns. For this reason methods
of estimating the drag coefficient from first principles by taking
the nonlinearities into account are of potential practical

interest.



27

2.4 Representation of Random Waves and Hydrodynamic Forces

Ocean waves are a complex phenomenon and the most recognizable
feature is randomness in time and space. Statistical concepts have
therefore been applied to their analysis and description [Sarpkaya
and Isaacson (1981) and Wilson (1984)].

Numerous one dimensional frequency spectral models have been
proposed to describe ocean waves. The Pierson-Moskowitz and the
Bretschneider spectra, which fundamentally are similar, are the
most commonly used. Both the Bretschneider and Pierson-Moskowitz
are based on theoretical arguments. However, they depend on
constants (that must be determined from experimental data) and are
semi-empirical. Another spectral model was obtained experimentally
from the analysis of an extensive wave measurement program known
as the Joint North Sea Wave Project (JONSWAP). The JONSWAP spectrum
is an extension of the Pierson-Moskowitz spectrum and has a much
sharper peak.

The standard form of the JONSWAP spectrum uses fetch F
and wind speed U,, (wind velocity at an elevation of 10m) as the

two basic input parameters and defines a non-dimensional fetch

- &F
F = 2.19
Uyo?

and a non-dimensional frequency

£, = 2.84 FO.3 2.20
The JONSWAP spectrum has the expression

a g?
Sﬂﬂ(f) = ————— exp [-5/4 (£/£,)°%] +* 2.21

(2n)* £5
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vhere f = g-E; / U;, is the peak frequency at which Sﬂﬂ(f) is a

maximum,
- (£-£,)2
a = exp [—] 2.22
ZUZfQZ

o describes the width of the spectrum on either side of the peak
and is specified as follows:
o, = 0.07 for f < £

. { o, = 0.09 for £ > £

a = 0.0662 (£, / 2.84)°-68 is dependent on the fetch
parameter and vy is a shape parameter with the following typical
values

7.0 for a very peaked spectrum
¥ =4 3.3 for the mean from selected JONSWAP data
1.0 for the Pierson-Moskowitz spectrum
Houmb and Overvik (1976) give a table of v values to be used for
different wave conditions (that is, varying wave height and wave
period).

A random sea can be simulated from a known spectrum using
numerical techniques. A numerical model of a random sea can be
based on a summation of a number of first order waves derived from
the surface elevation spectrum Sﬂn(f) in the following way

m
n(x,t) =Y a; cos(lyx - ot + @) 2.23

=1
where a; = /2 Spp (050w, 2.24
k; is the wavenumber and is related to the frequency and

water depth, d, by the dispersion relation

w;2 = g k; tanh (k,d) 2.25
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¢; 1s the phase angle and is selected from an independent and
uniform probability distribution between 0 and 2«.

Outlines of methods used to determine the wvariables in
equation 2.23 are given by Borgman (1969) and Shinozuka and Jan
(1972). Wave generators have been developed in which the input is
obtained by simulation in accordance with equation 2.23. See Funke
and Mansard (1979,1984) for details.

If it is assumed that linear wave theory applies then the
velocities and accelerations can be expressed in terms of the wave
spectrum. The velocity and acceleration of a wave are given in

complex form, using linear wave theory, as

ug(t) = Re (Hyi(£) n(t)) 2.26
ay(t) = Re (Hg4(£) n(t)) 2.27
uy(t) = Im (H,,(£) n(t)) 2.28
az(t) = Im (Hy,(f) n(t)) 2.29
where
cosh k(z+d)
Hyy (£) = 20f —oeme 2.30
sinh kd
cosh k(z+d)
Hox(£) = -1 4n? £2 o 2.31
sinh kd
sinh k(z+d)
Hz(£f) =2 n f —m—u—o 2.32
sinh kd
sinh k(z+d)
Hy  (f) = -1 472 f2 oo 2.33
sinh kd
and  n(t) = a et(kx"wt) , 2.34

where a is the wave amplitude. Hyx, Hax, Hyz and H,, are transfer

functions. Since the frequency are related to the wavenumber by the
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dispersion relation the transfer functions may be expressed as
functions of the wavenumber. Equations 2.26 to 2.29 are just linear
systems relating the output to the input [Bendat (1983) and Bendat
and Piersol (1982, 1986)]. We can thus obtain the power spectra of
the horizontal and vertical velocity and acceleration as functions

of the wave elevation spectrum as follows

Sux(E) = | Hyx(£) |2 Sp,(£) 2.35
Sax(E) = | Hax(£) |2 Sp,(£) 2.36
Suz(£) = | Hyz(£) |2 Sy, (£) 2.37
Saz(£) = | Haz(£) |2 Sy, () 2.38

Other quantities can be derived in exactly the same manner. Now
that the spectral properties of the wave properties have been
determined the spectral properties of the force on a cylinder,
using the Morison equation can be evaluated. The force per unit

length of cylinder is

p D pr D?
F(t) = Cd — uy(t) | uy(t) | + Cm ay(t) 2.39
2
If Kd and Ki are defined as
p D
Kd = Cd — 2.40
2
x D?
and Ki = Cnm 2.41
4
then equation 2.39 becomes
F(t) = Kd uy(t) Jug(t)]| + Ki ay(t) 2.42

The spectral density of the force can be obtained from the
latter’'s autocorrelation function. Borgman (1967a,1967b) has shown

that when the wvelocity and acceleration are assumed to be
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independent Gaussian processes the autocorrelation function can be
written as

Rux (1)

Rp(r) = Kd? o, ,* G(
2

) + Ki% Ry (1) 2.43

ux
where o,y is the standard deviation of the horizontal velocity and
G(r) = [(4r% + 2) arsin r + 6r (1-r2)1/2 |/«
or, in an expanded power series,
G(r) = (1/x)[8r + 4r3/3 + ©35/15 + ¥7 /70 + ...] 2.44
The spectral density for F is the Fourier transform of the

autocorrelation function. Hence,

[+ o]
Sp(£) = | Rp(r) e-i2nfry, 2.45
-0
Borgman (1969) showed that for uy less than approximately 2o,y
the linear approximation is reasonable. Using this approximation
the autocorrelation function becomes
Kd? o2
Rp(r) = 8 ————— R () + Ki? Rax(7) 2.46
x
and the spectral density is
Kd? aux2
Sp(f) = 8 ————— S x(£) + Ki? S .(f) 2.47
n
If the expressions in equations 2.35 and 2.36 are adopted, then the
spectral density can be written directly in terms of Sﬂﬂ(f) as
Kd? o2
Sp(f) = 8] ————— | Hyx(£)|% + Ki? | Hax(f)lzlsnn(f) 2.48
7
If the flow regime is inertia dominated then the first term in

equation 2.48 is negligible and the force spectral density becomes

Sp(f) = Ki% [Hgx(£)|? s,,(f) 2.49
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A comprehensive summary of methods for estimating the force
coefficients using spectral methods has been given by Borgman
(1972). Gemnerally, if time series are available it is easiest to
determine the drag and inertia coefficients using a least squares

method.

2.5 Effect of Current

A comprehensive review of current-wave interaction can be
found in Peregrine (1976). The salient features of this
interaction are summarized in this section.

When a wave encounters a current it is known that the wave
characteristics change. If the current opposes the wave then the
wave becomes steeper and shorter. If the current is in the
direction of the wave the wave becomes flatter and longer. This
changing of the waveform may lead to the breaking of the wave.

The current can substantially affect the wake and eddy
formation and transport. For example, a current perpendicular to
wave propagation will tend to sweep the vortices produced by the
wave motion, away from the structure. Very little information
exists on the effect of current wave interaction on the
hydrodynamic loading of offshore structures and the effects on the
values of Cd and Cm. In the 1976 BSRA W.278 report, of the twenty-
five papers reviewed on the evaluation of Cd and Cm, only three
papers mentioned current effects.

A common, though approximate way of accounting for the effects
of current is to sum vectorily the wave- and current-induced

particle velocities. Since the drag force is proportional to the



34

interaction between the irrotational flow field and the structure.
This assumption forces the user of the Morison equation to
interpret all nonlinear effects reflected in the experimental data
as being associated with the vorticity and hence with the drag
force. Lighthill argues that for real structures in real waves
there 1is a significant nonlinear force arising from the
irrotational flow component and that to ignore these nonlinear
forces can lead to misleading estimates for the drag coefficient.

As stated previously, it is the hydrodynamic drag that
controls the amplification of wind effects on compliant offshore
platforms. Therefore, accounting correctly for nonlinear effects
may in principle be of significant practical importance in this
context.

Lighthill derived two main second order correction terms due
to the nonlinear interaction between a surface piercing cylinder
and the irrotational flow field. The flow was assumed to consist
of sinusoidal waves propagating in the positive x direction. In his
derivation linear, deep water wave theory was assumed. The first
of the correction terms is a waterline force due to the integration
of the pressure between the still water level and the instantaneous
free surface. The second of the correction forces is due to the
horizontal gradient of the velocity (the extensional motions) and
is given by the resultant of the dynamic pressure acting over the
body’'s surface. Lighthill found that for a moderately steep wave
the second order forces amounted to approximately ‘20% of the
inertia force. In this case attributing all nonlinearities to the

drag force leads to a doubling of the drag coefficient. For a



36

Ellix proposed an additional correction term based on a model
suggested by Verley (1975) and associated with a third-order drag
force in the waterline region. In the writer’s opinion further work

would be needed to justify the use of this correction.

2.7 The Sarpkaya Correction Term

Sarpkaya (1976a) stated that "the difference between the
measured and calculated forces is primarily the fractional shedding
of vortices and vortex-induced oscillations in the in-line forces".

The work of Sarpkaya (198la, 1981b) was aimed at developing
an improved form of the Morison equation. This did not involve
completely modifying the Morison equation but rather finding
additional correction terms to account for vorticity. Sarpkaya did
an extensive study of the calculated and measured forces obtained
using a U-tube similar to that used in his 1976 work. Following
various attempted approaches that did not prove satisfactory,
Sarpkaya performed a Fourier analyses of the force residues (that
is, of the differences between the measured and calculated forces).
This approach was based on the residual analysis performed by
Keulegan and Carpenter for the case of sinusoidally oscillating
flow with velocity u = Uy cos wt. It was assumed that the force is

a summation of odd harmonics of wt. The force can then be written

as
F
——— = A, sin ot + A; sin 3wt + A, sin Swt + ..
p D Uy?
+ B, ' cos wtfcos wt| + B,' cos 3wt + Bs’ cos 5wt + ... 2.51
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This equation can be reconciled with the Morison equation by
expressing it as
F
———— = A, sin wt + B,’' cos wt|cos wt| + AR 2.52
p D Uy?

where AR = A; sin 3wt + A; sin Swt + .

+ By’ cos 3wt + Bs’ cos 5wt + ...

or
F T Dw cd
- = = Cm — sin wt - — cos wt|cos wt| + AR 2.53
p D Um? 4 [ 2
where
x Dw sin 3wt sin 5wt
- Cm — =A +A ——— + A —— .,
4 Up sin wt sin wt
cd cos 3wt cos Swt
and — = -B,’ - B;' - Bg' + ...
2 cos wt [cos wt| cos wt |cos wt]

Sarpkaya (1976a) found that the third harmonic of the residue
was significant. Therefore, Sarpkaya and Isaacson (1981) said that
the AR term could be expressed approximately as Ajcos wt +
B;sin wt or C,cos (3wt-®;). The Sarpkaya and Isaacson work was
significantly expanded and improved upon in Sarpkaya (1981la,
1981b). In his analysis of the new experimental data Sarpkaya found
that all the harmonics from two through fifteen appeared in the
spectral analysis but that the third and fifth hafmonics were by
far the most important. With this new analysis the residual grew
from one to two additional terms. The Morison equation was
therefore changed from a two term equation with two unknowns to a

four term equation with six unknowns.
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The analysis of the data showed that all the additional
constants were functions of the deviation of Cm from its ideal
potential value of 2.0 (for circular cylinders). All the constants
had a maximum or a minimum for KC =~ 12.5. Plots of two of the
variables are given in Figures 2.10 and 2.11. The form of the four

term Morison equation proposed by Sarpkaya is

p D p m D% 3u(t)
F=0Cd— u(t) ju(t)| + Cm
2 4 at
+ p D Up? C; cos(3wt - &)
+ pD Um2 C; cos(Swt - &) 2.54

or in final form the four term Morison equation is written as

p D p ® D? Ju(t)
F=C4d — u(t) ju(t)|] + Cm
2 4 at
p D Uy?
+ ———— [Ac; + By exp( Cg,(KC-12.5)2)] x
2A1/2

cos(3wt - A"1/2[Ag, + By, exp( Cg,(KC-12.5)2)]

p D Uy?
+ ———— [A;5 + Bos exp( C.5(KC-12.5)2)] x
2A1/2 .
cos(5wt - A1/2[Ag, + By, exp( Cps (KC-12.5)2)] 2.55

where A = (Cm* - Cm)/(KC Cd) and Cm* = 2 is the ideal value of the
inertia coefficient for a cylinder in potential flow. The universal

constants are independant of KC, Re and B and are equal to

Ag; = 0.01 B, = 0.10 Cey = -0.08
Ags, = -0.05 Bgy = -0.35 Cps = -0.04
Ags = 0.0025 Bos = 0.053 Ces = -0.06

Aps = 0.25 Bgs = 0.60 Cps = -0.02
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From equation 2.55 the residue as represented by the last two
terms approaches zero for KC < 7 and KC > 20. Therefore, the four

term equation reduces to the two term Morison equation outside the

" ~~drag inertia region. The additional terms reflect the role played

by the growth and convection of vortices on the in-line force.
When comparing the two term equation to the three and four
term equationm Sarpkaya found that the differences between the
calculated and measured forces were reduced significantly.
Subsequent investigations by Hudspeth and Nath (1985) yielded
values of the universal constants that differed from those given
by Sarpkaya. It appears therefore that additional work is needed
to obtain correction terms associated with vorticity that are

applicable to all flow cases.
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Figure 2.8. Mushroom shaped vortices.

[Honji (1981)].
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M: C, TERM IN MORISON EQUATION (WITH €\ =2);
D: C, TERM IN MORISON EQUATION (WITH Cyy=1-5);
SECOND - ORDER IRROTATIONAL-FLOW FORCE ;

S:
FORCE
R3% ™ T: IOTAL, WITH MAXIMUM 2.24.
. (NoTE: MAX(M+D)= 2:00, MAX(M+5)=2-02, -
2 AND C, WOULD NEED TO BE DOUBLED
TO MAKE MAX(M+D) = 2:24.)
i 4
)
0
~
_‘ -
-2 4

FORCE ON VERTICAL CYLINDER OF RADIUS b IN DEEP-WATER WAVES:
PLOT FOR KEULEGAN-CARPENTER NUMBER {0 (WAVE AMPLITUDE £3:2b),
WITH WAVE STEEPNESS ka=0-3 (WAVELENGTH &7b).

Figure 2.9. Lighthill correction terms. [Lighthill (1979)].
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CHAPTER THREE

MODELING OF WAVE FORCES ON CYLINDERS

3.1 Governing Equations of Motion

This section briefly reviews the equations of motion and the
boundary conditions needed for the development of Stokes’ second
order theory which in turn is used in this chapter to derive
theoretical expressions for wave forces on cylinders.

Consider a free, simple harmonic plane wave as shown in figure
3.1 propagating in the positive x direction. If we assume
incompressible, irrotational flow then we require that the fluid

motion be described by a velocity potential, ¢, such that

8¢ 8¢
U= — | Vo= — 3.1
ax 4z

The equation of continuity states that the rate of flow into
a control volume equals the rate of flow out. Assuming two

dimensional flow the continuity equation is

du ow
— 4 —— =0 for all (x,z) 3.2a
8x iz
3%¢ 3%¢

or _— + — =0 3.2b
%2 dz2

The boundary condition to be satisfied at the bottom is that
there is no flow through the boundary on which the fluid sits, that

is, the vertical velocity must be equal to zero at z = -d;

a¢
— = 0 at z = -d 3.3
dz
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The kinematic free surface condition states that any particle
on the surface remains on the surface. "Actually this property is
a consequence of the basic assumption in continuum mechanics that
the motion of a fluid particle can be described mathematically as
a topological deformation which depends continuously on time t"
[Stoker (1957)]. The condition is imposed by noticing that the
surface moves with the fluid and that (for a particle on the
surface)

d (z - n(x,y,t))

- 0 at z = g 3.4a
dt
dz dn(x,y,t)
or av— - e s e at z = ﬂ 3.4b
dt dt

The operation of taking a particle derivative d/dt is defined as

a() () a() a(y a0
—_ = U ——+ V— + W — + — 3.5
dt dx ay dz at

Equation 3.4b becomes

3¢ d8n 93¢ 8n 3¢ dn
— = 4 + 3.6
dz 3t 9x 8x 3y 8y

For two-dimensional flow, which is assumed in this report, equation

3.6 is

dz 3t 8x 8x 3.7
The second free surface boundary condition is the dynamic
boundary condition. It is a consequence of the unsteady Bernoulli
law which states that the pressure on the free surface is equal to

the atmospheric pressure (taken as zero), and can be written as
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3¢ 1 8¢ 1 8¢
gn + —+—-(—)2 + - (—)2 =0 atz =19 3.8
at 2 9x 2 3z
where g = acceleration due to gravity
p = fluid density
Implicit in equations 3.7 and 3.8 are the assumptions that there

is no underlying current, the depth is constant and the wave is two

dimensional and of permanent form.

3.2 Stokes Second Order Wave Theory

To obtain higher order terms in accordance with Stokes wave
theory we assume that the velocity potential, ¢, and surface
elevation, n, can be expanded in power series with respect to the

perturbation parameter, ¢, taken as equal to the wave steepness ak,

that is,
¢ =€, + €2 §, + € gy + .. 3.9
and n = ¢ n, + €2 n, + e? ng + .. 3.10

Substituting equation 3.9 in the Laplace equation gives

vi¢, =0 (k - 1,2,...) 3.11

The boundary condition of no flow through the ocean floor
gives

by,

— =0 (k =-1,2,...) 3.12

dz

Both the kinematic and the dynamic free surface boundary
conditions are applied at the free surface, z = p, which itself is

an unknown. The problem involves transforming the boundary

conditions at the unknown z = 5 to conditions at z = 0 (Still Water



)

53

Level). This can be done by using a Taylor series expansion such
that the boundary condition
f(z) = 0 at z = 9 3.13
is written as
af 1 3%2f 1 33 f
f(z) =9 —+ — 92 — 4+ — 9% — + .. =0 3.14
dz 2! 8z 3! az® ‘
where the derivatives of the function f are evaluated at z = O
(rather than at the unknown elevation q); By expanding equations
3.7 and 3.8 in the Taylor series expansion and collecting ¢ and €2

terms we obtain the first and second order boundary conditions:

(i) to first order

¢,

— + gn, =0 ' at z =0 3.15
at

an, 3¢,

—_— - — =0 at z =0 3.16
at dz

The value of n; in equation 3.15 is substituted in 3.16 to obtain

the following condition in terms of ¢, only

3¢, a9,
+ g — = 0 at z =0 3.17
at? dz

(ii) to second order

3¢, %4, 1

— + 1, + —(94,)% + gn, = 0 at z =0 3.18
at dtdz 2

an, 8¢, 3%¢, d¢, an, 3¢, an,

—_——— - + + =0 at z =0 3.19
at 3z 322 3x 8x dy dy

Using results for 5, from equation 3.15 and combining equations
3.18 and 3.19 we get equation 3.20 which is in terms of ¢, and ¢,

only.
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az¢2, 3¢, 9¢, 9, 8¢, 3¢,
+g— =g — - gm o
at2 3z ax 8x dz? 3z 3t?

¢, 62¢1 ¢, 82¢1
-2 - or
dz 08z at dx dxdt

82¢2 3¢, 3
+g— = - —(V4))>
at? dz at

3¢, 8 3¢, 1 3%¢,
+ — e (— -
dx 8z 3z g at?

) at z = 0 3.20

where the subscripts 1 and 2 denote the first and second order
quantities, respectively.

The boundary conditions can be expanded to any order required
but at the higher orders they become increasingly difficult to
formulate, for this reason this is usually done on a computer. The
solution of the Laplace equation subject to the boundary conditions
3.15 and 3.16 is given by the linear (Airy) wave theory. The theory
is valid when the wave height is very much smaller than the wave

length and the still water depth, and the solution is

1

n, = — cos(kx - wt) 3.21
k
g cosh k(z+d)

¢, = — —————— sin (kx-wt) 3.22
kw cosh kd

where k = wavenumber

d = water depth
The actual elevation and potential can then be obtained by
multiplying 3.21 and 3.22 by the perturbation parameter ¢ (see

equations 3.9 and 3.10).
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Consideration of the kinematic condition yields the linear
dispersion relation

w? = gk tanh kd 3.23
This shows that the wave speed (celerity, ¢ = w/k) only depends on
the wavenumber and water depth and is independent of the wave
height.
The water particle velocities can be obtained by differentiating
the potential in accordance with equations 3.1 to yield

3¢ g a k cosh k(z+d)

U, = — = cos (kx-wt) 3.24
ax w cosh kd
aé g a k sinh k(z+d)

W, = — = sin (kx-wt) 3.25
az w cosh kd

Once the first order solutions ¢, and n, are determined they
can be substituted in the boundary conditions 3.17 and 3.18 to
yield conditions for ¢, and n,, so that solutions for ¢, and 5, can

be obtained. The results of the second order analysis are

g 1
n, = (cosh 2kd + 2) cos 2(kx-wt) 3.26
4w? sinh? kd

3 g cosh 2k(z+d)
¢, = — — sin 2(kx-wt) 3.27
8 kw sinh® kd cosh kd

and the actual second order elevation and potential can be obtained
by multiplying these results above by the perturbation parameter
€2, Note thgt the second order components of u and ¢ have
frequencies that are twice the frequency of the first order

components. The corresponding second order horizontal and vertical

velocities, respectively, are
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3 ga?k?  cosh 2k(z+d)
u, = - cos 2(kx-wt) 3.28
4 w sinh® kd cosh kd

3 ga’k? sinh 2k(z+d)
W, = — sin 2(kx-wt) 3.29
4 w sinh® kd cosh kd

An important result of the second order analysis is that the
dispersion relation equation 3.23 is valid and hence it simplifies
the application of the theory. For third and higher orders the
celerity does depend on the wave height and the calculation of the
wave properties becomes much more complex.

One feature of the second order theory is that the particle
paths are not closed and there is a net drift of fluid in the wave
motion. One consequence of the orbits not being closed is that in
a closed system such as a wave flume this drift would imply a
gradual b.uildup of water at one end. Since this does not occur the
net mass transfer is assumed to be counteracted by a uniform

current flowing in the opposite direction.

3.3 Expression of the Morison Equation Force Based on Second Order

Stokes Theory

To use the Morison equation corresponding to periodic flow
with given amplitude a (a = H/2 where H = wave height), and period
T, it is necessary in practice to evaluate the in-line velocity and
acceleration corresponding to a and T. This can be done by using
Stokes theory. This section presents an approximation to the
Morison equation based on the second order Stokes theory.

The total force acting on a surface piercing cylinder is

obtained by considering an infinitesimal element, &y, of the
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cylinder at some depth below the still water level. The cylinder
is assumed small with respect to the wavelength and diffraction
effects are mnegligible. Morison et al. (1950) proposed an
expression for the force exerted by the surface waves on the
element which consists of the sum of two components. The first of
the components iIs the inertia force, Fi. This force is the product
of the so called virtual inertia and the acceleration, du/dt, of
the undisturbed fluid relative to the body. The virtual inertia
is the sum of the displaced mass (fluid density, p, times the body
volume, V) and the added mass, Ma, therefore the inertia force is
du
Fi = (pV + Ma) — 3.30
at
In ideal potential flow Ma is equal to pV. In real flows around
bluff bodies Ma » pV and the inertia force is usually specified in
terms of a parameter called the mass coefficient Cm (also known as
the inertia coefficient). It should be noted that the mass
coefficient is concerned only with the fluid forces on the boundary
of the body and has no relation to any actual mass. It is a
function of the body shape and has been theoretically calculated
for many standard geometric shapes such as spheres, circular
cylinders, disks and other bodies. In practice Cm is obtained by
measurement. With this notation equation 3.30 can be written as
du
Fi = Cm pV — 3.31
at
The second component is the drag force. This force acts over

the frontal area of the element, is proportional to the square of

the velocity and has the same direction as the velocity u. The drag
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force is due to the effects of viscosity. In particular, at
sufficiently large Keulegan-Carpenter numbers, separation of the
flow occurs which creates a low pressure region behind the body.
The drag force is then influenced by the point of flow separation
on the body and the nature of the flow wake. A major difference
between uniform flow and a harmonically oscillating flow, such as
a wave, is that in the latter case, the wake is swept back past the
cylinder each time the flow reverses. All the effects associated
with viscosity are accounted for by the drag coefficient Cd. The
drag force is written as
1
Fd = — p Cd A u |uj 3.32
2
The total force as expressed by the Morison equation is equal
to the sum of the inertia force (equation 3.31) and the drag force
(equation 3.32). To second order, by using the horizontal velocity

and acceleration given by Stokes’ theory (Section 3.2), the inertia

and drag forces become

prD? cosh k(z+d)
Fi = Cm { -ga k —————— sin ot -
4 cosh kd
3 cosh 2k(z+d)
- g a% k? sin 2wt
2 cosh kd sinh® kd
pnD? cosh k(z+d)
= -Cm g a k ——————— sin wt -
4 cosh kd
3 cosh 2k(z+d)
- Cm paD? g a? k2 sin 2wt 3.33
8 cosh kd sinh® kd

Fd = - Cd pD
2

1 g a k cosh k(z+d)
cos wt +

w cosh kd
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3 g a? k? cosh 2k(z+d)
cos 2wt X
4 w cosh kd sinh® kd

g a k cosh k(z+d)
cos wt +

) cosh kd

3 g a2 k? cosh 2k(z+d)
- cos 2wt
4 ©w cosh kd sinh® kd

3.34

If the upper and lower limits of integration are located at
vertical distances s and r below the still water level (see figure

3.2), respectively, then

pxD% [°% 3u
Ft = Cm — dz +
4 J_. a8t
1 -8
- Cd pD u ju| dz 3.35
2 Jos

If s does not differ significantly from r (so that the velocities
u at these two levels would not differ by more than 10% or so) then
it may be assumed approximately that the coefficients Cd and Cm are
almost constant along the element and can therefore be placed
outside the integral. We then obtain the expression for the Morison

equation based on Stokes’ second order theory:

pnD? sinh k(-s+d) - sinh k(-r+d)
Ft = -Cm g a sin wt -
4 cosh kd
3 sinh 2k(-s+d) - sinh 2k(-r+d)
— Cm pnD? g a? k sin wt +
16 cosh kd sinh® kd
1 g? a? k? sinh 2k(-s+d) - sinh 2k(-r+d)
- CdpD cos? wt
2 w? 4k cosh? kd
3 g? a% k8

+ - 0Cd pp ————owu x
8 w?
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sinh 3k(-s+d)+3sinh k(-s+d)-sinh 3k(-r+d)-3sinh k(-r+d)
{ cosh? kd sinh® kd }X
2cos wt cos 2wt +

9 g? a* xk*

— Cd pp ————— x
32 w?

sinh 4k(-s+d) - sinh 4k(-r+d) -4k(s-r)
cos? 2wt 3.36
8k cosh? kd sinh® kd
If the value of u from Stokes second order analysis is negative

then the drag force will be the negative of the value calculated

above.

3.4 Lighthill’s Second Order Correction Term
The force on a section of a cylinder is given by the sum of
the pressures integrated around the cylinder and along the cylinder
span.
At any point in a fluid, if the velocity potential ¢ is known,
the fluid pressure is determined by Bernoulli'’s equation
8¢ 1
P=-p, - pgZ - p — - —p(V$)% + C(t) 3.37
at 2
P, and C(t) may be taken equal to zero without loss of generality,
see Stoker (1957).
Expanding the pressure p and the right hand side of equation

3.37 with respect to the perturbation parameter ¢ we obtain, to

second order,
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P, + €py + €2p, = - pgz

as,
- €p — 3.38
at
a¢, 1 3¢, 1 daé,
- €2p — - €% = p (—)% - € = p (—)?
at 2 ax 2 az

When like terms in powers of ¢ are equated we get

Po = - pg2 3.39
34,

P, = -p — 3.40
at
a¢, 1

P, = -p— - — p (V¢,)? 3.41
at 2

To obtain p, and p, it is necessary to evaluate the first and
second order potentials ¢, and ¢,.
Consider a potential flow with velocity u in the far field.
The presence of a circular cylinder results in a modified flow
field (see figure 3.3) whose potential 4, corresponds to a dipole
(Milne-Thomson (1960), p. 154), that is
b2
#¢qg =u (r + —) cos ¢ 3.42
r
Using this potential it can be shown that the term in the right
hand side of equation 3.40 and the first term in the right hand
side of equation 3.41 lead to the first and second order inertia
forces, respectively. The inertia force can be calculated by
evaluating the integral

3¢
Fi= | -p — ny ds 3.43
. at
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where ny is the direction cosine between the outward normal and the
direction of the force component and ds is an elemental length on
the perimeter of the body. Substituting 3.42 in the integral
(equation 3.43) gives
du b?
Fi = -p —(r + —) cos 8 r cos # df 3.44
at r

Evaluating 3.44 at r = b gives

2n du
Fi = -p — 2 b2 cos?¢ df

0 at
du

= -2pnb%2 — 3.45
at

which is the ideal potential value of the inertia force.

Strictly speaking, equation 3.42 would be wvalid if the
cylinder response is due to the fluctuating velocity only. However,
in the case of a wave flow the in-line velocity has a nonzero
horizontal gradient (extension) denoted by E = gJu/dx. This
extension can be expressed as a sum of a pure dilatation and a
dilatationless strain (figure 3.4). The cylinder responds to a
variable extension because the cylinder itself impedes the local
extensional motion of the fluid that would occur if the element
were absent. This in turn sets up a local compensating addition to
the irrotational flow field. This corresponds to a field, and a
potential, that may be expressed as sums of two terms:

a) a monopole field associated with the pure dilatation to which
there corresponds the potential, ¢,, is [Lighthill (1979), p. 19],
E r

¢, = = (r? - 2b% 1n-) 3.46
4 b
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where E = Extension = du/dx or 3w/dx
r = radius to point being considered
b = cylinder radius
b) a quadrupole field associated with the dilatationless strain to

which there corresponds the potential, ¢q, is [Paterson (1983),

p. 217]
E b4

¢y = — (r?2 + —) cos 26 3.47
4 r?

where § = angle between the axis and the point being considered.
Therefore, the total potential for the fluctuating extension is
given as the sum of equations 3.46 and 3.47, that is,
E r E b*
¢y = — (r?2 - 2b% 1n-) + - (r?2 + —) cos 24 3.48
4 b 4 r?

To include the response to the fluctuating extension in the

dynamic pressure, the extension needs to be expanded in a power

series
E=¢E + e E + ...... 3.49
8%¢, a%¢,
where E} = and Ejy =
ax2 Ix?

The extension potential, ¢,, expanded in the power series 3.49
gives

E, r E, b*
¢, = €4 — (r? - 2b% In-) + — (r? + —) cos 24
4 b 4 r?

E, r E, b*
+ €2 — (r? - 2b% In-) + — (¥2 + —) cos 24 3.50
4 b 4 r?

The basic fluctuating velocity potential, #4. can be expanded as
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g = €u, (r +

Using polar

velocities, on the
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1% b?
—) cos # + €?u, (r + —) cos 3.51
r r

coordinates the horizontal and <vertical

cylinder surface (r = b), are, respectively

18¢ 138
vg=—— =—- —(¢ ¢, + €2 ¢,) 3.52
r 34 r 36
3¢,
= ¢ (-E;, b sin 2 - 2 — sin §) +
ax
3¢,
€2 (-E, b sin 26 - 2 — sin §)
dx
¢ 8
Vy, = — = —(e ¢, + e? é2) 3.53
dz dz
8¢, 8%¢, 1 8E, 1 3E,
- e + 2 b cos § + — — b2 + - — b2 cos 28)
8z dxdz 4 3z 2 3z
34, 8%4, 1 8E, 1 3E,
+ €2 ( — + 2 bcos § + —— b2 + — — bZ cos 24)
dz dxdz 4 9z 2 4z

We can now calculate the total second order dynamic pressure, p,,

(1/2p(V41)%),

P2a

P a¢1
- -4 E,;2 b% sin® 20 + 4 — E,; b sin 24 sin #
2 ax
g, 3¢, 3¢, 82¢1
4 (—=)2 sin? § + (—)2 + 4 — b cos ¢
ax dz dz 8xdz
1 3¢, 3E, 3¢, 9E, %4,
- — — b%? + — —— b% cos 26 + 4 ( )2 b2 cos? ¢
2 9z 04z dz @z xdz
324, OE, 8E, 3%4,
— b% cos § + 2 — b® cos # cos 26
dx3z 48z dz 0xdz
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1 8E, 1 9E,
+ — (—)2 b* + = (—=)?% b* cos 24
16 3z 4 9z
1 8E,
+ — (—=)2 b* cos? 24 ’ 3.54
4 8z

The dynamic force around the cylinder is calculated as follows

1
Fay = J ; p (V4,)? ny ds

du,, du,, JE;
+ 2pnb* — 3.55
ax ax 38z

= pnb? u,  E, + 2pnb% u,,

where p = fluid density
= first order velocity in the x direction = 3¢, /9%

E, = first order extension in the x direction = 324, /dx?
u,, = first order velocity in the z direction = 3¢, /3z

and the total force on the section being considered is

Fpq = I Fy, dz 3.56

For slender cylinders the last term in equation 3.55 turns out
to be insignificant compared to the first two. If we consider deep
water waves (kh > n) and Stokes first order theory [as in Lighthill

(1979)], we obtain

du,,
. E = -u, 3.57
ax
and
Fey = - prb? u, . E; 3.58

which is the same as the result obtained by Lighthill (1979) for
deep water waves.
For the effect of a current to be included, we write the

velocity potential of the current as
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bz
¢, = U, (r + —) cos ¢ 3.59
r

and the horizontal velocity is

1 3¢,
Veg = —
r 446

= -20U, sin 4 3.60

where U, is the current velocity and is assumed to be constant. The
total velocity is then calculated and substituted into the equation
for the dynamic pressure to obtain a total perimeter force equal

to

du,, duw,, JE, U.E,
Faye = pnbz{ulx E, +2u, — + 2pnb? + } 3.61
ax 8x 9z 2
The second order extension E, is usually much smaller than E,. If
the first order velocity is much greater than the current, the
correction term due to the current is small compared to the first
two terms in equation 3.61 and can be ignored.

The resultant total force on the element, due to the dynamic
pressure, is found by integrating the perimeéer force (equation
3.55) over the section being considered. For the case of an
elemental section always below the free surface (such as the force

sleeve of figure 3.2) the force acting on that section is given by

equation 3.56, that is

-8
Foq = J de dz 3.62
-r

Therefore, the total Lighthill second order force acting over the

elemental section is

J's du, , du,, 3E,;

Foq =prb2 (uy B, +2 v, —— + 2 b2 —)dz 3.63

ax ax dJz

-x
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When the results from Stokes second order wave theory are

substituted in equation 3.63 we obtain

sinh 2k(-s+d) sinh 2k(-r+d)
( -8) - ( - x)
b2 g2k 2k 2k
Foq = -p
z 4 cosh? kd
sinh 2k(-s+d) sinh 2k{(-r+d)
( + 8) - ( + 1)
nb2g2k 2k 2k
+ p
2w? cosh? kd
sinh 2k(-s+d) sinh 2k{(-r+d)
( + s5) - ( + 1)
b g2 k2 2k 2k
- p X
202 cosh? kd
a’k? sin 2(kx-wt) 3.64

In addition to the second order force due to the dynamic
pressure an additional nonlinear force is present due to the
integration of the pressure up to z = 0 rather than z = g
[Lighthill (1979)]. This is a horizontal force which acts at the
still water level, z = 0. This term does not come into effect in
the analysis in this work as we are only determining the load over
a small section of the cylinder that is always below the free
surface, for which the effect of integration up to z = n has been
taken into account in the derivation of the velocity potential 4.

According to Lighthill (1979) the analysis for the second
order corrections is equally relevant in random wave fields. If the
analysis is to be performed in the time domain then the velocity
is simply the local fluctuating velocity and the extension is the

local fluctuating extension in the wave field.
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3.5 Relations Between Flow Properties and Their First Order
Components |

The first order quantities of equation 3.61 were expressed in
equation 3.64 in terms of wave amplitude, a, and period, T, using
Stokes second order theory.

The periodic flow data obtained from the Naval Civil
Engineering Laboratory include measurements of the flow velocities
near the cylinder as well as measurements of the wave amplitude and
period. To take advantage of the availability of the velocity data
relations must be developed to obtain the requisite first order
components of equation 3.61. Initially the following approach was
attempted. Let the first and second order components of the total
measured velocity u, be denoted by u, and u,, , respectively, so
that

W +u, = 3.65

We require

Uin Uge
- 3.66

U Wse

where u,;5, and u,;, are the first and second order components

calculated by Stokes’ second order theory. It follows that

Usste
u (1 + ) =y, 3.67
Uise
or
Yy Wsy
u, - 3.68

(W5y + Upsy)
It can be seen from equation 3.68 that this approach is not

workable because at points where Uy = UW,o, (see figures 3.5 and
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3.6), u,, as calculated by equation 3.68 becomes very large. In the
case of figure 3.6, this occurs over a sizeable time interval. To

eliminate this problem the following relations were used:

v 5¢ |
Ui = Wgy + (uy - (Ug, + Uyg,)) 3.69

[u;g¢ + Upgel

[uysy |
Wp = Uy + (U - (U5 + Uyg,)) 3.70

lu;gp + Upgyl

Relations of this type were applied to all the measured wave
kinematics: horizontal velocity, vertical velocity, horizontal
acceleration and vertical acceleration.

The extension E and the spatial derivatives of the vertical
velocity u, and of E, which are also needed in equation 3.61, were
not measured, since such measurements cannot be carried out in
practice. To estimate E, , du,, /3x and 8E, /3z, we make use of the

following relations based on Stokes'’ theory.

k du,,

E, = - - 3.71
w Jt

du,, k du,, 3 79

ax w Jt

dE, )

— = -k u,, 3.73

dz

Thus

k aulxm

Elm e - 3.74
w Jdt

and so forth, where u,,  is the calculated first order velocity.

All the required first order components based on the measured data
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can be calculated and the Lighthill force equation 3.61 can be

evaluated.

3.6 Wave Flow Representation by Fourier Series

Consider a sample record x(t) of finite length T. Assume that
the record is sampled at an even number, N, equally spaced points
a distance f = T/N apart. The time series x,,,, where x ,, is the
value of x(t) at t ,; = (m+l)f (m = 0,1,2..), can be regenerated

by a Fourier series as follows

Kpeg = 81/2 + ay,,,,/(2N(-1)7) +

N/2+1 27xmn 2xmn
+ Y (a,,, cos +b,,; sin —) 3.75
n=1]1 N N
where

2 N-1 2xmn

8,41 =— )L Xy4q COS ; n=0,1, 2..., N/2 3.76
N m=0 N
2 N-1 27mn

by, = - z Xp+y Sin —— ; n =0, 1, 2..., N/2 3.77
N m=0 N

Equations 3.75, 3.76 and 3.77 can be used to smqoth the
measured time history. This is done by truncating the Fourier
series representing the time history, so that high frequency
components due to noise are eliminated. Equation 3.75 will thus
become

a, NFc 27xmn 27xmn

X4y = — + ) (a4, cos + byyy sin
2 n=1 N N

) 3.78

where NFC is the number of Fourier components in the truncated
series. This smoothing procedure can be used for both random and

periodic waves.
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A Fourier analysis can be used to obtain the time series of
the extension, du/dx. If in equation 3.78 the variable x represents

the velocity u and the extension E, respectively, then

a, NFc 27mn 27mn
Uppqg = — + Z (a 4, cos + b ,, sin —) 3.79
2 n=1 N N
and
NFC 27rmn 2rmn |
Epoy = 2 (a,4+; k, cos + b,y kK, sin —) 3.80
n=1 N N

where k, is the wavenumber determined from the dispersion relation.
The frequency used for the calculation of the wavenumber is
2nn
w, = — 3.81
Nf
This method for estimating the extension will be used to
calculate the extensional time history for the random data. It is
noted that for the periodic data Stokes second order theory may be

used directly for calculating the requisite values of E, that is,

the use of equations 3.79 and 3.80 is not needed in this case.

3.7 Frequency Composition of the Residual Force
In the residue analysis by Keﬁlegan and Carpenter (1958) and
by Sarpkaya (198la, 1981b) it was required when calculating the
drag force to simplify the trigonometric expressions that arise
from the ufu| term. If Stokes second order theory is used, then
this term is of the form
(a cos wt + b cos 2wt) |a cos wt + b cos 2wt] 3.82

Ellix (1984) has shown that if (1) b << a such that b? cos? 2wt is
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negligible, (2) cos wt and cos 2wt are of opposite sign, and (3)
|b cos 2wt]| < {a cos wt],
then
(a cos wt + b cos 2wt) [a cos wt + b cos 2wt| =
a? cos wt |cos wt| + 2ab cos 2wt |cos wt]| 3.83
Ellix found that the approximation in equation 3.83 is very close.
Using a Fourier analysis approach Keulegan and Carpenter
(1958) have shown that

cos wt |cos wt| =

8 8 8
— co0s wt + —— cos 3wt - cos Swt + ..
3x 15« 105n

Using a similar approach, the following result is obtained for
the second term on the right hand side of equation 3.83

cos 2wt jcos wt| =

2 28 76
- + —— cos 2wt + cos 4wt + .. 3.84
3x 15= 105n
Therefore,
a? cos wt |cos wt| + 2ab cos 2wt |cos wt| =

8 8 8
a? { — cos wt + — cos 3wt - cos 5wt + ...} +

3x 15~ 105«
2 28 76
2ab — 4 —~—— c0s 2wt + cos 4wt + ...
3x 15n 105«
4 8 56 8
~ — ab + — a2 cos wt + — ab cos 2wt + —— a? cos 3wt
3x 3n 15~ 15n
152 8
ab cos 4wt - a? cos 5wt + ... 3.85
105« 105n
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For perfectly harmonic flow, Keulegan and Carpenter and Sarpkaya
showed that the force residual comprises only odd harmonics.
However, equation 3.85 shows clearly that in an actual wave flow
the residual will comprise all harmonics rather than just odd
harmonics. This result is used later in the analysis of the Naval

Civil Engineering Laboratory data (Section 5.5).

3.8 Evaluation of the Force Coefficients

Sarpkaya and Isaacson (1981) give some of the most frequently
used methods to evaluate the force coefficients Cd and Cm. In this
study the time invariant coefficients are calculated using the
method of least squares. This procedure involves minimizing the sum
of the squares of the errors between the measufed and the
calculated forces, that is, the coefficients Cd and Cm were chosen

to minimize the quantity

1 x
R? - . Y R? 3.86
i=1

prD? du, pD
—— = Cd — u |u|)
4 3t

where R, = (£, - Cm

f, is the measured in-line force, and
N is the number of data points
By making RZ stationary with respect to variations in both Cd and
Cm (that is, setting 8R%/3Cm = 3RZ/3Cd = 0), the required
solution is obtained:
Fy Ay - Fp Ay

Cm = 3.87
A11 Ay - A21 A12
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. F, Ay Fy Ay
~ ca = 3.88
Ay Agp - Ay Ay
where
Fp=f u
Fp=f u oy
prD?
Ay = u,
4
pD
Alg = — uy uy oy
2
pxrD?
Az = Uy Yy Uy
4
pD
Ayy = — (u; u;)?
2
If the hydrodynamic force depends upon the coefficients Cm!

(associated with the inertia force in the Morison equation), Cm!I

(associated with the Lighthill correction term), and Cd (associated

with the drag force in the Morison equation) it is necessary to

minimize equation 3.86 where

R,

where

- (f, -Cn' X - Cm'T Y - Cd 2) 3.89
pnD? Ju, . Bu,,
X = +
4 at at
pnD? ou,, D? ou,, JE,
Y - (u, E;, + 2y, + — —)
8 ax 2 8x 98z
pD
Z=-— ulx Iulxl
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For the condition

3RZ  BRZ 3RZ
- - =0 3.90
8cd aCm¥ aCmit

we obtain

E1 Dz - D1 Ez
Cd = 3.91
Ds Ez - Es Dz

Fa Gl - Fl Ga
Cm!l = 3.92
Fz Ga - Gz Fs

Cn!! = 3.93

where A, =f, Z B, =f X C, -f, Y
A, =X Z B, = X2 C, =X Y
A, =Y 2 B, =X Y C, =Y,
) | A, = 2% B, ~X 2 c, =Yz
D, = (-A, B, + B, A)) E, = (C, B, - B, C;)
D, = (A, B, - A, B,) E, = (B, C; - C; B,)
D, = (A, B, - B, A,) E; = (B, C, - C, B,)

These results (equations 3.87, 3.88, 3.91, 3.92 and 3.93) are
used to obtain time invariant coefficients required when modeling
the fluid forces on a cylinder using either the Morison equation
or the Morison equation with the Lighthill correction. Time
invariant coefficients are used with either periodic flow (such as

the NCEL data) or random flow (such as the Delft data).
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Figure 3.2. Integration limits for the force element.
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Basic flow
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Figure 3.3. Basic potential fluid flow around a cylinder.
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CHAPTER FOUR

EXPERIMENTAL DATA

This chapter presents a summary and basic analyses of the
experimental data from the following three sources:
1. The British Maritime Technology (BMT), U.K. which supplied full-
scale random data from the Christchurch Bay Tower.
2. Naval Civil Engineering Laboratory (NCEL), California, which
supplied data obtained in periodic waves from a series of 28 tests
conducted at the Oregon State University (0SU).
3. Delft Hydraulics Laboratory, Netherlands, which supplied data

obtained in random waves from laboratory tests.

4.1 British Maritime Technology

The Christchurch Bay wave force experiment involved the
measuring of wave forces on two vertical circular columns which
formed part of a structure placed in Christchurch Bay. The test
setup is shown in figure 4.1 [from Standing (1980)]. The forces
were measured using force sleeves of 0.48m diameter and 0.54m
height. The particle velocities were measured at points adjacent
to the elements to avoid uncertainties associated with having to
deduce the particle properties indirectly. Two sets of data, Runs
Nos. 35 and 54 were obtained. The data included the force in the
X and Y direction and the velocity in the X, Y, and Z directions,
for four levels of the column. According to the BMT analysis the

two records were to have the following properties:
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Record 54; Surface elevation rms = 0.68m (corresponding to
approximately 20 minutes maximum waveheight = 5.3m);
current = 0.83 m/sec.

Record 35; Surface elevation rms = 0.51lm (corresponding to
approximately 20 minutes maximum waveheight = 4.0m);
current = 0.54 m/sec.

The data received from BMT were analyzed, and figures 4.2 to
4.7 give typical time histories and spectra for the force, velocity
and acceleration in the x direction at the first level. These
results are representative of the four levels. None of the time
histories has been smoothed, but the means have been subtracted.
Although the time histories have zero mean it can be observed that
the spectral densities of the force and mean are not zero at zero
frequency. This may be attributed to the time series having non-
zero autocorrelations at small time increments and/or to drift in
the measuring devices. Figure 4.8 shows the velocity spectrum that
corresponds to figure 4.7 but with the mean included in the
analysis. It can be seen that the inclusion of the mean gives a
larger spectral density at zero frequency than that calculated with
the mean removed. The mean can be viewed as a trend with infinite
period, hence zero frequency.

The effective Keulegan-Carpenter numbers proposed by Standing
are for Run 35, KC* = 11.76 for level 2, KC* = 12.76 for level 3,
KC* = 12.37 for level 4 and KC* = 11.71 for level 5. For Run 54 KC*
= 14.87 for level 2, RC* = 22.32 for level 3, KC* = 21.53 for level

4 and KC* = 21.87 for level 5.
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From the analysis, basic statistical properties of the data
were obtained which are summarized iﬁ Table 4.1. All the horizontal
velocity spectra give a spectral peak at approximately 0.125 Hz
(period T = 8.0s). Using this representative period and maximum
velocities from Table 4.1, for any particular run and level,
maximum Keulegan-Carpenter numbers can be determined. The KC values

based on a zero mean velocity are:

for Run 35 level 2 KC = 24.10
level 3 KC = 23.25
level 4 KC = 20.20
level 5 KC = 18.57
for Run 54 level 2 KC = 32.53
level 3 KC = 34.79
level 4 KC = 32.21 J
level 5 KC = 32.24 |

Because they are based on the maximum velocity these values are
considerably higher than the effective KC values which are based
on averages.

From the mean velocities given in Table 4.1 the direction and
amplitude of the current can be determined. These are given in
Table 4.2. The data supplied by BMT did not include a current
direction because of apparent malfunction of the current
directional meter (Personal communication from J.C. Shipway, BMT).
From Table 4.2 it can be seen that the calculated current velocity
varies considerably over the depth of the test. In addition,
Standing (1980) found that in some tests the current decreased and

changed direction during the course of a run. It is concluded that
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the data were affected by currents whose values and variations are
poorly measured. Such currents would also significantly affect the
analysis and therefore introduce uncertainties in the latter. For
this reason it was decided not to pursue the analysis of the BMT

data.

4.2 Naval Civil Engineering Laboratory

Tests were conducted in the Oregon State University (0SU) wave
flume to determine wave forces on a vertical cylinder. The flume
has an overall length of 104m, of which 39.3m constitutes the
length in which tests can be performed without any effect from the
wave board. According to OSU good, repeatable waves can be produced
ranging from a high frequency of 1.0 Hz to a low of approximately
0.12 Hz. The cylinder was smooth, 0.324m in diameter and the forces
were measured over a 0.305m section 2.377m from the bottom. The
still water depth was 3.505m. The wave flume and cylinder setup are
shown in figures 4.9 and 4.10 respectively [Hudspeth and Nath
(1985)].

The da;a obtained from NCEL includes the wave profile, in-
line force and velocity measurements for a reasonable range of wave
heights and wave periods, and hence, of the Keulegan-Carpenter
number. - Twenty eight different tests were obtained and a summary
of the wave properties, for each test, is given in Table 4.3. The
Reynolds number was calculated on the basis of the measured water
temperature of 10° C (50° F). The kinematic viscosity was therefore
1.307 x 10°% m?/sec. Each of the twenty eight runs consisted of

eight waves. The runs were divided into seven individual waves,



85

each wave being defined as starting and ending at points of maximum
velocity (or zero acceleration). In this manner startup and end
irregularities were eliminated. It was found from the time
histories that the points of maximum velocity coincided with points
of zero acceleration extremely well. The wave properties for each
of the individual waves are given in Table 4.4. Note from Table 4.3
that for periodic waves the effective Keulegan-Carpenter number,
as proposed by Standing, is a good estimate of the KC value based
on the maximum velocity when KC is less than approximately 8.

The first fifty Fourier components of all the time histories
were calculated and after inspection it was decided to smooth all
time histories using the first 20 components. This eliminated the
high frequency noise and allowed numerical differentiation of the
velocities to obtain the accelerations. It was observed that the
second order components obtained by Fourier decomposition of the
measured time histories were significantly greater than the second
order components based on Stokes’ second order wave theory,
especially for flows with low KC numbers. A series of unsmoothed
and smoothed time histories are given in figures 4.11 to 4.22. All
the histories are for Run NCELO8 and are typical of the results.
All of the runs were tested according to LeMehautes criterion (see
figure 2.1) to evaluate the appropriate wave theory to be used for
describing the wave properties. In all cases either Stokes 2nd or
3rd order theory were found to be suitable.

The first and second order components of the measured
quantities were obtained using the approach described in Section

3.5. Some typical plots of the first and second order components
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of the velocity are given in figures 4.23 to 4.25. Figure 4.23
shows the first and second order components for the horizontal
velocity for a record with very low KC number (KC = 0.31). For this
situation the second order component is negligible. Figure 4.24
shows the components for a moderate KC of 9.56. In this situation
the second order component is more significant and cannot be
ignored. Finally, figure 4.25 shows the components for the highest
KC of 16.19. 1In this case the second order component is greater
than 20% of the total wvalue.

Plots of the horizontal extension for the same low, moderate
and high KC values are given in figures 4.26 to 4.28. As with the
velocities, the second order values for the higher KC values are
considerable and play a significant part in the total effect.

The effect gf using just the local acceleration in the Morison
equation was evaluated by plotting the 1local and total
accelerations for different wave steepnesses. The value of the wave
steepness varied between a low value of 0.025 to a high value of
0.324. Figures 4.29 to 4.32 show the difference between the local
and total accelerations for wave steepnesses 0.024 (wave height =
0.21lm), 0.1é0 (wave height = 1.09m), 0.215 (wave height = 1.25m)
and 0.324 (wave height = 0.97m). These figures show that the
difference between the local and total acceleration is negligible.
According to Sarpkaya and Isaacson (1981) the larger errors occur
at the higher wave steepnesses. However, in the case of figures
4.29 to 4.32 the larger error occurs at the higher values of wave
height and not necessarily at the higher wave steepnesses. The

largest difference between the local and total acceleration occurs
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in figure 4.30 and is less than 4%. From these typical comparisons
it is seen that the effect of the convective acceleration is
negligible and that the Morison equation inertia force can be
evaluated acéurately using the local acceleration (see Section
2.3.1).

A comprehensive analysis of the NCEL data is given in the next

chapter.

4.3 Delft Hydraulics Laboratory

This section gives a summary of the random laboratory data
supplied by the Delft Hydraulics Laboratory (DHL). The test was
conducted in a Delta flume which is located in DHL’s De Voorst
Laboratory. The flume is 230m long, 5m wide and 7m deep and is
equipped with a programmable, hydraulically driven piston type
wavemaker. At the end of the flume was a 1:6 slope installed for
wave damping. The maximum reflection coefficient expected was 10%.
To prevent reflection from the paddle a device was developed to
absorb the wave [Bearman et al. (1985)]. The tests involved a 7m
long, 0.5m diameter smooth vertical cylinder under random loads.
The water had a mean depth of 5m and the waves were generated from
a JONSWAP spectrum with a significant wave height of 0.8m and a
spectral peak frequency of 0.167 Hz. The duration of the test was
189 minutes and the sampling frequency was 10 Hz.

From the peak spectral frequency an average wavenumber can be
determined using the dispersion relation. The wavenumber calculated
is k = 0.165. The product kd, where d = depth, is therefore 0.825.

This value of kd does not fall in the shallow water or deep water
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range. Therefore, the approximation of the hyperbolic functions in
Stokes theory, applicable to these two regions could not be used.
Also, the Lighthill correction term cannot be reduced to a single
term as it can when the fluid flow is in the deep water range.

The instrumentation consisted of a force sleeve for
simultaneous force measurements in two directions, 26 pressure
transducers equally spaced in one cylinder cross section, two wave
gauges, two Colnbrook electromagnetic flow meters and two
perforated ball flow meters.

The measured quantities that were used in the analysis were
the in-line force, the horizontal and vertical velocity, all
measured at 2.5m (the lower level) and 3.5m (the upper level) above
the bottom of the tank and wave elevations which were measured
before and after the cylinder. The locations of all the measuring
equipment are shown in figure 4.33.

When the time histories were first plotted there was visible

noise in most of the measured quantities so it was decided to

smooth the relevant time histories. To determine the degree to
which the time histories should be smoothed the total error for
varying number of Fourier components was determined. Figure 4.34
shows a plot of the root mean square error (that is»/((Fmeasured
- Fsmoothed)z/number of points)) versus the number of Fourier
components used to smooth the time history, for the horizontal
velocity at the lower level. All of the other variables produced
a similar result. From this figure it can be seen that to eliminate

the noise and still provide a reasonable representation of the time

series we need to use between 5000 and 22000 Fourier components.
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The ratio of rms error to variance gives that the error difference
between 6500 Fourier components and 20000 Fourier components is
rather small therefore, the time histories were smoothed using 6500
Fourier components. This corresponds to an approximate cutoff
frequency, f, = 0.572 Hz (f, = 5x6500/56832 where 56832 is the
total number of Fourier components needed to completely regenerate
the time history and 5 is the cut-off frequency for the total time
history). Typical time histories of the horizontal velocity before
and after smoothing are given in figures 4.35 and 4.36,
respectively. If the high frequency noise had not been eliminated
from the velocity time history, instabilities would have occurred
when numerically differentiating to obtain the acceleration.

Typical time histories of all the relevant smoothed
quantities, that 1is, wave elevation, horizontal and wvertical
velocity, horizontal and vertical acceleration and in-line force
for the two different measuring positions, are given in figures
4.37 to 4.48. All forces are per meter length of cylinder and the
time histories are plotted starting from t = 150s to eliminate any
errors due to the startup of the experiment. Following the time
histories in figures 4.49 to 4.60 are the spectra of the measured
quantities given in figures 4.37 to 4.48. Some of the statistical
properties of the time histories are given in Table 4.5.

The effective Keulegan-Carpenter number as defined by Standing
(equation 2.10) was KC* = 5.75 for the lower level and KC* = 6.00
for the upper level. From the analysis of the NCEL data it was seen
that the effective Keulegan-Carpenter number was a reasonable

estimate of the actual Keulegan-Carpenter number especially for
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KC < 8. Since the Keulegan-Carpenter numbers for the data are
relatively low, it would be expected that the dominant part of the
total Morison force is due to the inertia term. The region of low
KC numbers is also one in which Lighthill’'s correction is, in
principle, most applicable. Using the ranges of suitability of
various wave theories suggested by LeMehaute it can be seen from
the data ( H/gT? = 0.0023, d/gT? = 0.0142, where H = wave height,
g = acceleration due to gravity, T = wave period and d = water
depth) that Stokes second order theory should be applicable. Also
from the NCEL analysis it was seen that for KC < 7 the second order
components of velocity and acceleration were small compared to the
first order values. Hence the Lighthill force can be calculated
based on the total properties rather than just the first order
components.

The calculation of the ho;izontal extensional motion involved
determining the partial derivative of the velocity with respect to
horizontal (x) and vertical (z) distance. Owing to the absence of
direct measurements (these would be extremely difficult to obtain),
the extensional motions were obtained by differentiating the
Fourier series of the velocities with respect to x or z (Section
3.6). Typical time histories of the horizontal gradient of the
horizontal and vertical velocity are given in figures 4.61 and 4.62
respectively. The spectra of these horizontal gradients are given
in figures 4.63 and 4.64.

Generally, in spectral representations of the Morison equation
the nonlinear drag term is linearized to ensure that the velocity

component at one frequency affects only the drag component of the
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same frequency, so that a transfer function can be used. This
linearization was reviewed in Secfion 2.4. The term ufju} (full
line) and its linearized counterpart (dashed line) are given in
figures 4.65 and 4.66 for the lower and upper levels, respectively.
It is seen that differences between the spectra of the original and

the linearized terms are negligible.
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LEVEL RECORD
RUN 35 RUN 54
VELOCITY DIRECTION VELOCITY DIRECTION
FROM +Y FROM +Y
m/s degrees m/s degrees
2 0.286 157.3 0.674 63.3
3 0.439 211.4 0.558 71.3
4 0.418 208.1 0.536 73.4
5 0.738 191.4 0.349 66.4

Table 4.2. Current magnitude and direction for each level

of BMT data
RUN WAVE WAVE MAX. WAVE  KEULEGAN EFFECTIVE REYNOLDS
NUMBER HEIGHT PERIOD VELOCITY LENGTH CARPENTER KC NUMBER
m secs m/s m NUMBER
NCELO1 0.325 1.998 0.170 6.221 1.049 0.965 42135
NCELO2 0.109 2.001 0.051 6.254 0.319 0.286 12752
NCELO3 0.309 2,483 0.189 9.446 1.453 1.364 46947
NCELO4  0.569 2.490 0.332 9.494 2.551 2.455 82207
NCELO5 0.974 2.494 0.573 9.525 4.411 4.173 141850
NCELO6 0.290 2.704 0.207 18.007 2.369 2.284 51322
NCELO7 0.757 3.694 0.522 17.937 5.952 5.687 129300
NCELO8 1.277 3.700 0.924 17.979 10.559 10.108 228970
NCELO9 0.193 4.617 0.128 24,086 1.830 1.698 31793
NCEL10 0.435 4.608 0.300 24.019 4,271 4.137 74383
NCEL11l 1.054 4.610 0.848 24,036 12.068 11.534 210030
NCEL12 1.292 4.615 0.951 24.070 13.558 12.858 235680
NCEL13 0.229 5.291 0.147 28.427 2.395 2.218 36328
NCEL14 0.366 5.282 0.283 28.371 4,611 4.138 70040
NCEL15 0.769 5.270 0.603 28.294 9.811 8.086 149360
NCEL1l6 1.024 5.288 0.815 28.409 13.303 10.439 210850
NCEL17 1.089 5.285 0.891 28.389 14.538 11.146 220730
NCEL18 0.852 5.987 0.793 32.832 14.652 11.621 196350
NCEL19 1.432 4.193 1.056 21.297 13.675 13.394 261680
NCEL20 1.098 5.291 0.937 28.428 15.309 11.983 232190
NCEL21 1.283 4.608 0.941 24.019 13.391 12.747 233160
NCEL22 1.294 3.694 0.899 17.937 10.259 9.797 222850
NCEL23 0.991 2.490 0.621 9.495 4.773 4,758 153770
NCEL24 0.835 5.979 0.802 32.791 14.807 11.901 198690
NCEL25 1.252 3.689 0.887 17.909 10.103 9.493 219730
NCEL26 1.070 4.607 0.792 24.019 11.273 10.831 196280
NCEL27 0.582 5.979 0.530 32.789 9.788 8.525 131360
NCEL28 0.699 5.979 0.658 32.789 12.147 10.067 163000

Table 4.3. Wave properties for each of the 28 NCEL runs.
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MEASURING
DEVICE

WAVE GAUGE 1
WAVE GAUGE 2
FORCE SLEEVE
FORCE SLEEVE
FORCE SLEEVE
FORCE SLEEVE
VELOCITY 1X
VELOCITY 1Z
VELOCITY 2X
VELOCITY 2Z

1X
1y
2X
2Y

UNITS

meter
meter
Newton
Newton
Newton
Newton
meter/sec
meter/sec
meter/sec
meter/sec

101

MEAN

-0.006
0.001
18.400
4.580
-5.110
1.890
0.001
0.010
0.019
-0.003

STD.
DEV.
0.212
0.210

102.300
9.860
136.500
15.820

0.250
0.111
0.277
0.149

MIN.

-0.
-0.
-379.
-139
-524,
-284.
-1.
-0.
-1.
-0.

810
820
600

.900

900
600
039
520
066
706

1.
0.
.100
149,
.000
230.
.020
456
.176
.588

378

546

O = O

036
859

500

300

Table 4.5. Statistics for the Delft data.
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ANEMOMETER

~——WIND VANE
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RADAR N3P ———FOG DETECTOR
WAVE HEIGHT
GAUGE
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\ / ?lE’;IISERATURE
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WAVE STAFF
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Figure 4.1. Force measuring elements on the Christchurch Bay
Facility [Standing (1980)]. :
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Figure 4.51. Spectrum of inline force, lower level.
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Figure 4.52. Spectrum of inline force, upper level.
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CHAPTER FIVE
DATA ANALYSIS AND ESTIMATION OF CORRECTION TERMS FOR THE PERIODIC

FLOW

This chapter deals with the analysis of the experimental data for
the periodic flow described in Section 4.2 and the evaluation of
the Lighthill and Sarpkaya correction terms (see sections 3.4 and

2.7, respectively) for these data. -

5.1 Estimates of the Inertia and Drag Coefficients in the Morison
Equation.

The Morison equation, as applied to periodic flows, uses
horizontal flow velocities and accelerations at various elevations
to calculate forces on vertical cylinders. The flow properties
being used are obtained on the basis of assumed or measured
properties of the flow. For example, the flow properties can be
calculated from the measured or assumed wave amplitude and period
using an appropriate wave theory (for example, linear or second
order).

It is of interest to compare the estimated inertia and drag
coefficients obtained by using measured flow properties or flow
properties based on various models for the wave flow. In this
section, inertia and drag coefficients are estimated that
correspond to the measured in-line forces on the cylinder, and to

the description of the wave properties based on:
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1. Measured horizontal velocity and accelerations. The force has
the expression:
#xD? du, pD
Fi =p— Cm — + — Cd4, |y, | u,
4 at 2
where u, = total measured velocity.
2. Horizontal velocities and accelerations calculated using the

linear wave theory, the flow properties being based on the measured

wave amplitude and period. The force in this case has the

expression
xD? du, pD
Fp =mp—Cm, — + — Cd; |u,| u,
at

where u, = the first order velocity calculated from linear wave
theory. This model can be used in the design office.

3. Horizontal velocity and accelerations calculated using second
order wave theory, the flow properties being again based on the

measured wave amplitude and period. The expression for the force

is
nD? du, du, pD
F3 = p — Cmy (— + —) + — Cd, fu; + uy| (u; + uy)
at at

where u, = first order velocity and u, = second order velocity,
both are calculated using Stokes theory. This model can also be
used in the design office. By comparing F, and F, it is possible
to assess the effect of including second order terms.

4. Horizontal velocities and accelerations obtained from measured
values of these quantities by assuming that third and higher order

components are negligible, and that the first and second order
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components can be obtained from the measured values by using
equations 3.69 and 3.70. The expression for the force is
#xD? du,,  pD

F, =p Cm, + — Cd, |u;,| u,
4 at

where u, = first order velocity calculated in accordance with
equation 3.69. Note that u,_  and du,_ /3t are not true first order
components, since by the manner of their calculation they include
in fact contributions of higher order components. Nevertheless,
this model is based on the measured value of the velocities, and
is likely to be more realistic than the second model, which is
based on theoretical rather than actual flow properties.

5. The velocity is equal to u,, as defined above. However, the
acceleration is assumed to be equal to the sum of the first order

and the second order components. The expression for the force is

nD? du, . du, pD
F; = p — Cm; ( + =) + — Cdy up,| uy,
4 at at 2

where u, = second order velocity calculated in accordance with
equation 3.70. Since the Lighthill correction consists of second
order terms (see equation 3.55), it is deemed that the presence of
the second order acceleration provides for a more consistent
formulation of the force to a second order approximation.

Least squares analyses were performed to obtain the time
invariant coefficients Cd; and Cm; (i = 1,2,..5). Separate
analyses were performed as follows:

(a) For each of the seven individual waves in e#ch run. All five

models were evaluated.
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(b) For the whole run. Only the first model was evaluated.

Justification for this will be presented later.

For the first model figures 5.1 to 5.3 plot the drag
coefficients for each individual wave, showing their variation with
Keulegan-Carpenter number (KC), Reynolds number (Re) and the
frequency parameter (B8), respectively. The drag coefficients show
a large variability at low KC. This may be expected because the
drag term is small relative to the inertia term and instabilities
occur in its calculation. Note that above KC = 4 the drag term
is more significant and shows little variation with increasing KC.
It is noted that the dependence of the drag coefficient on KC is
similar to that reported by Sarpkaya (1976a).

Figures 5.4 to 5.6 plot the inertia coefficients for each
individual wave against KC, Re and B8, respectively. It is seen in
figure 5.4 that at low KC numbers the inertia coefficient is
greater than the ideal potential flow value of 2.0. This is in
agreement with results obtained by Chakrabarti (1976,1980), who
also reported values of Cm significantly greater than 2.0. To some
extent the results are also similar to those obtained by Keulegan
and Carpenter (1958) and Sarpkay; (1976a,1976b,1976c). In the
circular cylinder data obtained by Keulegan and Carpenter at low
KC (KC < 4.5) all the estimated inertia coefficients had values
greater than the ideal potential flow value of 2.0. Sarpkaya had
few results in the low KC region, but for the flows where KC < 4.5
the inertia coefficients were greater than 2.0. Differences may
be noted between the results obtained by Chakrabarti and from the

NCEL tests on the one hand, and by Keulegan and Carpenter and by
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Sarpkaya on the other. These may be explained by the fact that the
flow in the NCEL and Chakrabarti’s tests is two-dimensional under
a changing free surface, whereas in the Keulegan and Carpenter and
Sarpkaya tests the flow is one-dimensional.

The variation of Cd and Cm with Reynolds number has the same
general trend as the variation with KC. Neither Cd or Cm varies
greatly with the frequency parameter. It is noted that the range
of Re and B numbers covered by this investigation is small.

Figures 5.7 and 5.8 plot, against the Keulegan-Carpenter
number, the averages of the drag and inertia coefficients,
respectively. These are defined as the averages of the
coefficients of the seven individual waves of each run. The drag
and inertia coefficients estimated from the total run are plotted
in figures 5.9 and 5.10, respectively, against the Keulegan-
Carpenter number for the total run. No significant difference is
observed between the coefficients calculated from the total history
and those calculated by averaging the individual wave results.
Therefore, testing all five models on the total run is not
necessary; averaging individual results provides a very good
estimate of the results that would be obtained for the total run.

The second model is now discussed briefly. Figures 5.11 and

5.12 show the variation with KC number, of the drag and inertia
coefficients, respectively. From figure 5.11 it can be seen that
there is more scatter in the drag coefficients at low KC for the
second model than for the first model (figure 5.1). Again, at
higher KC numbers there is slightly more scatter but the difference

is not significant. Figure 5.12 shows that, for low KC, the inertia
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coefficients for the second model are closer to the ideal potential
flow value of 2.0 than is the case for the first model (based on
total measured flow properties). In general, inertia coefficients
calculated using the second model are smaller and exhibit more
scatter than those based on the total measured flow properties.

Figures 5.13 and 5.14 show the variation of the drag and
inertia coefficients with KC, respectively, for the third model.
When comparing figures 5.11 and 5.13 it can be seen that the
addition of the second order term does not change the drag
coefficient significantly over the range of KC considered. Also,
when comparing figures 5.12 and 5.14 the same can be said for the
inertia coefficients. The main noticeable difference between first
and second order results occurs at higher KC numbérs where the
model including the second ordér properties exhibits slightly less
scatter.

In figures 5.15 and 5.16 the variation of the drag and inertia
coefficients with KC, respectively, is plotted for the fourth
model. The results shown in figure 5.15 differ very little from the
results for the first model (figure 5.1). Also there is little
difference between the inertia coefficients based on the fourth
model (figure 5.16) and those based on the first model (figure
5.4), the largest difference occurring at the higher KC numbers.
It is seen from the comparison of the first and fourth models that
the inclusion of the second order measured terms has a negligible
effect on the drag and inertia coefficients. This was also observed

in the comparison of the results for the second and third models.
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However, the difference between the coefficients for the first
and fourth models on the one hand, and the second and third models
on the other, is quite significant. This difference may be
explained by remembering that, as indicated previously, the fourth
model is not a true first order model, that is u,, and du, /3t each
represent a sum of infinitely many harmonic components multiplied
by a factor. Also, as stated in section 4.2, the second order
components obtained by Fourier decomposition of the measured time
histories were, especially at low KC numbers, significantly greater
than the calculated second order components based on Stokes second
order wave theory. Indeed it is noted in figure 5.12 (inertia
coefficients for the second model), that at higher KC numbers the
mean values do not differ significantly from the corresponding
values in figure 5.16. However, at lower KC numbers the difference
is quite significant. The same comment can be made when comparing
the drag coefficients for the fourth model (figure 5.15) and the
drag coefficients for the second model (figure 5.11). It is the
difference between the measured and theoretical second order
components, stated above, that leads to the discrepancy between the
coefficients based on the measured flow properties and those based
on the Stokes theory.

Figures 5.17 and 5.18 show the variation of the drag and
inertia coefficients with KC, respectively, for the fifth model.
A comparison of the drag coefficient based on the first model
(figure 5.1), the fourth model (figure 5.15), and the fifth model
(figure 5.17) shows that as the model flow properties approach the

total measured properties the drag coefficient has less scatter at
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higher KC numbers. The same pattern is seen for the inertia
coefficients shown in figure 5.4 (based on the first model), figure
5.16 (based on fourth model) and figure 5.18 (based on fifth
model) .

From the analysis of the five different models a few
observations can be made: |
1) The use of second order velocity and acceleration terms or
approximations thereof in the Morison equation does not alter the
drag and inertia coefficients significantly.
2) The inertia and drag coefficients calculated by averaging the
individual wave results are good estimates of the coefficients for
the whole run. Therefore, each model did not need to be evaluated
for the whole run.
3) The inertia coefficients based on the measured flow properties
are pgreater than the ideal potential flow wvalue of 2.0 and are
greater than the values predicted by Sarpkaya (1986) and Bearman
et al. (1985). This will be discussed in more detail in the

following section.

5.2 Theoietical Analysis of the Force Coefficients

The Stokes theory reviewed in Section 2.3,3 predicts values
of Cm > 2.0 for flows with low Keulegan-Carpenter numbers. If that
theory were applicable to the NCEL flows with low KC numbers then
it could be expected that, for these flows, the Cm and Cd values
obtained by using the Morison equation would be identical or close

to the values obtained using equations 2.12 and 2.13.
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Calculations were conducted to ascertain whether this is so.
It was found that for all low KC flows the inertia coefficients
were at least 10% greater than the value yielded by equation 2.12.
For example, for 8 = 40163 and KC = 1.049 equations 2.12 and 2.13
yielded Cm = 2.011 and Cd = 0.125. The values calculated from
the measured flow properties were Cm = 2.34 and Cd = 0.163.
For 8 = 17372 and KC = 1.83 equations 2.12 and 2.13 yielded Cm =
2.017 and Cd = 0.109. The values based on the measured data
were Cm = 2.253 and Cd = 1.006. It is therefore concluded that
equation 2.12 is not an acceptable model for the inertia
coefficients in the case of the NCEL low KC flows. A similar
statement cannot be made confidently for equation 2.13 which yields
the drag coefficient, owing to the instabilities that occur when
estimating Cd by the least squares method for the NCEL data at 1ow
KC numbers.

Equations 2.12 and 2.13 were derived under the assumption that
fluctuating flow velocities are very small, so that it is allowable
to neglect the terms which involve the square of the velocity
[Stokes (1850), p. i2]. The equations were rederived in Bearman et
al. (1985) again on the basis of the assumption that the boundary
layer equations (derived from the Navier-Stokes equations) may be
linearized. In light of the discrepancies between the results
obtained from the tests and those based on equations 2.12 and 2.13
it is in order to verify the extent to which the linearization is
acceptable for low Keulegan-Carpenter number wave flows. In Lin
(1957) it 1is suggested that linearization is acceptable for

oscillatory flows with frequencies of, say, 5000 Hz. In the case
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of the NCEL data, however, the frequencies are of the order of 0.5
Hz. We now show that for the NCEL data, and possibly for other data
to which an attempt to apply Stokes theory was reported [Bearman
et al. (1985), Sarpkaya (1986)], the nonlinear terms neglected in
Stokes theory are relatively large compared‘to the linear and
viscous terms rather than being negligible.

Assume, for the order of magnitude analysis in the boundary
layer equation, that the mean flow is zero, that is, the flow
comprises only the oscillatory components in equations 2.l4a to
2.14d. Assume also that the oscillatory component is equal to that
obtained from linear wave theory. In order to have a useful
comparison of terms all velocities are nondimensionalized by the
free stream velocity, U, , all linear dimensions are
nondimensionalized by the cylinder diameter, D, and time is
nondimensionalized by D/U,. The nondimensionalized velocities U
and u are then both of order 1. The ratio of the boundary layer
thickness to the cylinder diameter is denoted by §. As noted by
Schlichting (1960), in the boundary layer v is of the order §, and
since the component of velocity parallel to the wall increases from
zero at the wall to the value 1 in the free flow, across the
boundary layer we get

du 8%u 1 av &

— =~ -, and — = — whereas — = — = ]
8y ay? 82 8y &

fu—

o

Equation 2.15 then becomes
du, du, du,
— tyuy — +Vv, — +
ét ax 3y

wD/U, 1 kD & 1/8
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du, ou,
Uy — + Vv, —— =
8x ay

1 kD & 1/6

av, 8y, au, 8%y,
— +U, — -U, — +v
at ax ax ay?

wD/U, 1 kD 1 kD (1/R,) 1/62

The orders of magnitude are shown in the version of equation 2.15
given above under each individual term; w = circular frequency of
the circular flow, k = wavenumber of the flow, and R, = Reynolds
number. Definitions of wu,, v, and U; can be found in section
2.3.3. The orders of magnitude shown are valid if, as stated
previously, the flow is approximately described by linear wave
theory. In most wave tank tests and in the ocean environment the
circular frequency is of the order O to 5. The corresponding value
of the wavenumber can be obtained from the dispersion relation
(equation 3.23) and gives k = 0 to 2.5. From Schlichting the
nondimensionalized boundary layer thickness is of the order
(1/R,)1/2, therefore, it can be seen in the comparison above, that
all terms are of the same order of magnitude. This simple analysis
shows that the nonlinear terms cannot be considered insignificant.

Research appears to be in order on the extent to which the
nonlinear terms neglected in Stokes and Bearman et al. might be
capable of explaining the large values of Cm, as well as the values
of Cd, corresponding to low KC flows of interest in ocean

engineering.
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5.3 Calculation of Forces Using the Morison Equation

The force time histories based on the Morison equation with
time invariant coefficients were calculated for both the full time
history and each individual wave of the full record. Figures 5.19
to 5.22 show measured and calculated full force time histories for
the 1lowest KC (KC = 0.32), as well as for KC = 4.41, KC =
10.26 and the highest KC (KC = 15.31). The dominant harmonic of the
residue for all the force histories appears to be close to the
second harmonic of the force. It is noted that the Lighthill
correction term which is a second order term also has frequencies
equal to twice the fundamental frequency. On the other hand the
Sarpkaya residue terms described in section 2.7 have frequencies
equal to odd multiples of the fundamental frequency.

Results corresponding to typical individual waves from each
of the runs plotted in figures 5.19 to 5.22 are given in figures
5.23 to 5.26. These individual waves were typical of all the
individual wave results and it was found that for all waves the
dominant harmonic of the residue appears to be close to the second
harmonic of the force (see residue curve in figures 5.23 to 5.26).
Figure 5.27 shows the root mean square error, normalized by the
maximum force for the individual wave, versus the Keulegan-
Carpenter number for each of the individual waves. The results are
based on time invariant drag and inertia coefficients and the total
measured flow properties. The normalized error is relatively
constant for the range of KC considered, that is for these data the
Morison equation fits the data well in the inertia dominated and

drag-inertia regimes. No comment can be made on the drag dominated
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regime because the KC numbers for these tests do not fall in the
normally accepted drag dominated regime (that is, KC > 20, see
section 2.3.1). It should be noted, in figure 5.27, that six
points at KC = 12 to 14 are significantly different from the rest
of the data points in the same region. This run (NCEL16) was found
to give unrealistic results including the results concerning
inertia coefficients, see, for example, figures 5.4, 5.8, 5.10.
The reason for the deviation is not understood and might be

attributed to experimental factors.

5.4 Force Coefficients and the Lighthill Correction Term

This section deals with the Lighthill correction term, its
effect on the force coefficients, Cd and Cm, and the effect the
Lighthill correction has on reducing the error between the measured
and calculated forces.

Three different force models were tested to determine which
would give the best fit of the calculated forces to the measured
forces for the individual waves. Only the first two models were
tested on the total time histories. The force models were:

(1) The Morison equation with the Lighthill correction, using the
total measured flow properties. The drag and inertia coefficients
are based on the Morison equation only.

(2) The Morison equation with the Lighthill correction, using the
total measured flow properties. The drag and inertia coefficients
are based on the Morison equation with the Lighthill correction.
(3) A true second order analysis, that is, only using terms up to

and including second order. That is, du/dt = du, /3t + 8u,/3t; and
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u Jul = u  |u,|. The components u, and u, are based on the
measured flow properties (section 3.5). The drag and inertia
coefficients are based on the Morison equation with the Lighthill
correction.

The results for the entire time histories will be discussed
first. Figures 5.28 to 5.31 plot the total calculated forces using
the first model (that is, based on the Morison equation with the
Lighthill correction) and the measured forces for the same KC
values given in figures 5.19 to 5.22. Comparing figures 5.19 to
5.22 with figures 5.28 to 5.31 it can be observed that there is a
minimal difference between the residues (difference between the
calculated and measured forces) calculated using the Morison
equation on the one hand, and the residues calculated using the
Morison with the Lighthill correction on the other. This is more
apparent in figure 5.32, which plots the rms error for the forces
calculated using the Morison equation with the Lighthill correction
versus the rms error for the forces calculated from the Morison
equation (without corréction). It can be seen that there is very
little deviation from the line of equal error, indicating that the
Lighthill correction is insignificant for this set of data.

The second series of plots are again for the the entire time
histories (figures 5.33 to 5.36) and show the measured and
calculated forces based on the second model above. When figures
5.33 to 5.36 are compared to figures 5.19 to 5.22 or figures 5.28
to 5.31, it can be seen that again the difference between the
residues is minimal. This can be seen more clearly in figure 5.37

where the rms errors for the Morison equation are compared with
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those for the second model given above. The force coefficients
based on the Morison equation with the Lighthill correction are
therefore not significantly different from those calculated using
just the Morison equation. This can be seen more clearly in
figures 5.38 and 5.39 where the drag and inertia coefficients,
respectively, are shown for the individual wave results., These two
figures plot the force coefficients based on the second model, with
the force coefficients based on the Morison equation superimposed.
It can be seen that there is very little difference in the drag
coefficients over the whole range of KC numbers considered. For the
inertia coefficients the largest error, although still small occurs
at the higher KC numbers. Hence, it can be concluded that for the
NCEL data the addition of the Lighthill correction does mnot
decrease the drag coefficient significantly.

Results of the analysis of the force time histories for
individual waves with the Lighthill correction are now discussed.
Figures 5.40 to 5.51 show the measured and calculated forces for
the three models described at the beginning of the section. The
same individual waves as used in the previous section are analysed.
From all the figures it can be seen that the addition of the
Lighthill correction does not change the total forces
significantly. It can be noted that at low KC numbers the results
based on a true second order analysis (model 3) are not
significantly different from the results based on the total
measured flow properties (model 1 and model 2). This could be
expected since at low KC numbers the second order components are

much smaller than the first order components. The Lighthill
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correction becomes larger with increasing KC numbers though it is
still negligible for practical purposes.

An overall assessment of the three models can be made by
comparing the rms error for each model against the rms error for
the Morison equation. Figure 5.52 plots the rms error for each
individual wave of the NCEL record for the first model against the
rms error for the Morison equation. It is seen that the Lighthill
correction does not improve on the Morison equation; in fact in
most cases the Morison equation without correction provides a
better fit to the measured forces. Figures 5.53 and 5.54 plot the
rms errors for the second and third models respectively, against
the rms error for the Morison equation. Again these figures show
that the effect of the Lighthill correction is negligible.

Calculations were also performed to examine the effect of the
Lighthill correction on the drag and inertia coefficients using
different models for the flow parameters. The calculations showed
that this effect was negligible in all cases. Thus the addition
of the Lighthill correction did not improve the Morison equation
for the range of KC and Re numbers covered by the NCEL tests.
Also, the addition of the Lighthill correction term did not alter
the drag coefficient to any significant extent. Both conclusions
are at variance with those suggested in Lighthill’s 1979 BOSS

keyndte address.

5.5 Sarpkaya's Correction Term
The NCEL data was also analyzed according to the procedure

adopted by Sarpkaya (198la, 1981b), in which the total force was
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divided into a drag force, inertia force and a residual force. For
data obtained in one-dimensional flow Sarpkaya found from a Fourier
analysis of the force residue (Fpeasured - FMorison) that the third
and fifth harmonics were dominant. The analysis for the NCEL data
which corresponds to a two-dimensional flow showed that the second
and third harmonics were generally dominant. It was seen in Section
3.7 that if instead of a harmonic wave there are higher frequency
components, then the residue comprises all harmonics and not just
the odd ones as derived by Keulegan and Carpenter (1958) and
Sarpkaya (198la, 1981b). From the previous section outlining the
results of the Lighthill analysis it was seen that the force
residues are not accounted for by the Lighthill correction.
Therefore, an approach similar to the one proposed by Sarpkaya was
used to see whether this would provide a better fit to the measured
force data.

Typical results for the Fourier components of the residue for
different KC values are given in Tables 5.1 to 5.5. Tables 5.1 to
5.5 give results for waves with a KC = 0.39 (inertia dominated),
KC = 2.36 (inertia dominated), KC = 6.24 (inertia/drag-inertia
transition), KC = 10.12 (drag-inertia regime), and KC = 14.93
(drag-inertia regime), respectively. Although all harmonics from
one through ten are present the second and third are dominant.

Sarpkaya formulated his residue in terms of a constant, A,
which is the ratio of the deviation of the maximum inertial force
from its ideal value to the maximum drag force. In Sarpkaya's data
the value attained a maximum at about KC = 12.5, Figure 5.55 plots

A against the KC number for the NCEL data. The scatter in A for
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low KC can be attributed to the uncertainty in the drag coefficient
at low KC. The value of A is constant for all KC values greater
than approximately 8.0 and does not have the variability between
KC = 6 and KC = 20 that was observed in the Sarpkaya results.

Two residue models were tested: 1) same model as Sarpkaya
(that is, residue comprising third and fifth harmonics see equation
2.54), and 2) based on the results obtained from the Fourier
analysis of the force residues of the NCEL data. For this data the
residues second and third harmonics were dominant. Coefficients
were averaged over the seven individual waves from each run.

Figures 5.56 to 5.61 show the variation of each of the six
coefficients (Cd, Cm, C;, &, C5, & see equation 2.54) with KC
number for the first model. Comparing figure 5.56 to figure 5.7
(average ldrag coefficient calculated using the Morison equation)
and figure 5.61 to figure 5.8 (average inertia coefficient
calculated using the Morison equation) it can be seen that
inclusion of the Sarpkaya correction does not alter the drag or the
inertia coefficients significantly. The coefficient C, (figure
5.58) does show significant variability for KC > 5, and the results
are not as well behaved as those obtained by Sarpkaya (see figure
2.10). The other three coefficients showed even more variability
with KC and none of the coefficients followed the pattern obtained
by Sarpkaya (which is similar to that of figure 2.10).

Figures 5.62 to 5.67 give the variation of the six
coefficients (Cd, Cm, C,, ®,, C;, &) with KC for the second model.
As with the first Sarpkaya model, the addition of the two

correction terms does not alter the magnitude of the drag and
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inertia coefficients significantly. This can be seen by comparipg
the drag coefficients in figures 5.62 and 5.7 (coefficients based
on the Morison equation) and the inertia coefficients in figures
5.67 and 5.8 (based on the Morison equation). Also the
coefficients in the correction terms (C,, ®,, G;, ®;) showed more
variability with KC number than would be expected if the Sarpkaya
residue model were valid.

Figure 5.68 compares the root mean square error values for the
two different models. From this figure it can be seen that in all
cases the rms error for the first model is greater than the rms
error for the second model. In figures 5.69 and 5.70 the rms errors
for the two models are compared with the rms error for the Morison
equation. The second model leads to a significant reduction in the
error and the first model gives results that are not significantly
different from the Morison equation results, that is the second
model is significantly better than the Morison equation. Note that
all of the coefficients were obtained by least squares curve
fitting. These values are only applicable to the present set of
data, and the results should not be generalized to other types of
flow.

From the analysis of the Sarpkaya correction terms a few
observations can be made:

1. The force coefficients Cd and Cm do not vary significantly with
the model chosen.
2. There is no clear variation of the ratio A as shown in the

results obtained by Sarpkaya for 6 < KC < 20.
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3. The residue coefficients do not have the consistency of the
values obtained by Sarpkaya, and there is no distinct maximum at
KC = 12.5, as observed in Sarpkaya’s and Keulegan and Carpenter's
results.

4. The universal constants and the Sarpkaya distribution (see
Sarpkaya (198la), equation 66) relating the coefficients to the KC
number are not valid for the NCEL wave data. This is attributed to
the fact that, unlike the experimental flows analyzed by Sarpkaya,
which are one-dimensional, the NCEL flows are two-dimensional wave

flows under a changing free surface.
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N A(N) B(N) c(N) PHASE
1 -0.897 -0.165 0.912 1.389
2 -1.528 -1.658 2.255 0.745
3 0.924 0.342 0.985 1.216
4 0.305 0.129 0.331 1.172
5 0.234 0.066 0.243 1.296
6 0.185 0.037 0.189 1.375
7 0.149 0.027 0.151 1.388
8 0.123 0.026 0.125 1.363
9 0.108 0.023 0.111 1.360
10 0.098 0.019 0.100 1.373

Table 5.1. First ten Fourier components of the force residue,

KC = 0.39.
N A(N) B(N) c(N) PHASE
1 -0.138 -0.088 0.164 1.000
2 -0.374  -1.344 1.395 0.272
3 0.159 0.574 0.596 0.271
4 0.053 0.162 0.170 0.319
5 0.044 0.110 0.119 0.380
6 0.038 0.061 0.072 0.559
7 0.032 0.034 0.046 0.758
8 0.025 0.028 0.037 0.734
9 0.021 0.026 0.033 0.674
10 0.019 0.021 0.028 0.758

Table 5.2. First ten Fourier components of the force residue,

KC = 2.36.
N A(N) B(N) C(N) PHASE
1 0.077 0.167 0.184 0.432
2 -0.108 -0.876 0.882 0.123
3 0.238 -0.323 0.402 -0.635
4 0.161 -0.068 0.175 -1.169
5 0.113 0.088 0.143 0.911
6 0.068 0.054 0.087 0.906
7 0.047 0.004 0.047 1.485
8 0.044 0.002 0.044 1.523
9 0.045 0.017 0.048 1.198
10 0.038 0.018 0.042 1.132

Table 5.3 First ten Fourier components of the force residue,
KC = 6.24,
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N  A(N) B(N) C(N) PHASE
1 -0.310 0.431 0.530 -0.623
2 0.669 -0.617 0.910 -0.826
3 -0.395 -0.710 0.813 0.508
4 -0.139 -0.336 0.364 0.392
5 -0.086 0.006 0.086 -1.503
6 -0.056 0.052 0.076 -0.826
7 -0.041 -0.009 0.042 1.358
8 -0.034 -0.031 0.046 0.841
9 -0.032 -0.011 0.034 1.252
10 -0.029 0.005 0.029 -1.390

Table 5.4. First ten Fourier components of the force residue,

KC = 10.12.
N A(N) B(N) C(N) PHASE
1 0.297 1.464 1.494 0.199
2 -0.104  -3.052 3.054 0.034
3 0.002 -1.220 1.221 -0.002
4 0.080 -0.734 0.738 -0.108
5 0.091 -0.011 0.092 -1.429
6 0.052 0.142 0.151 0.348
7 0.028 0.024 0.037 0.857
8 0.024  -0.046 0.052 -0.476
9 0.030 -0.019 0.036 -0.989
10 0.032 0.019 0.037 1.013

Table 5.5. First ten Fourier components of the force residue,
KC = 14.93.
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CHAPTER SIX

DATA ANALYSIS AND ESTIMATION OF CORRECTION TERMS FOR THE RANDOM FLOW

This chapter deals with the analysis of the random
experimental data described in Section 4.3 and the evaluation of

the Lighthill correction for these data.

6.1 Estimates of the Forées Based on the Morison Equation

Least squares analyses of the total smoothed time histories
of the measured forces, velocities, and accelerations were
performed to estimate the drag and inertia coefficients in the
Morison equation. The values so obtained were Cd = 0.2345 and
Cm = 1.8295 for the lower level and Cd = 0.5393 and Cm = 2.0502 for
the upper level. Using these time invariant drag and inertia
coefficients the force time histories were regenerated using:
1. The Morison equation in conjunction with the total measured
horizontal velocity and acceleration.
2. The Morison equation in which the drag term was linearized
(equation 2.47), in conjunction with the total measured velocity
and acceleration.
3. The Morison equation in which the drag term was neglected, in
conjunction with the total measured acceleration.
4. The Morison equation in terms of the wave elevation and linear
wave theory (equation 2.48), in conjunction with the total measured

wave elevation.
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The regenerated force time histories are shown in figures 6.1 to
6.8, where the full lines represent the measured force/spectra and
the dash lines represent the calculated force spectra. The spectra
were obtained by using IMSL routine FTFPS which calculates the
spectrum by fast Fourier transformation of the autocorrelation
function. The analysis of the data showed that the effective
Keulegan-Carpenter number was 5.75 for the lower level and 6.00 for
the upper level (see section 4.3). From these KC numbers it would
be expected that the flow conditions would be inertia-dominated
approaching the inertia/inertia-drag transition (see section
2.3.1).

Figure 6.1 shows the measured force spectrum at the lower
level and the calculated force spectrum based on the first force
model. It is seen that the Morison equation with time invariant
coefficients provides an excellent fit to the measured force
history at the first level. A similar conclusion for the upper
level follows from figure 6.2, which shows that the largest
discrepancy is about 5% and occurs at the spectral peak. It is
concluded that, for the Delft data, the Morison equation with time
invariant coefficients provides an excellent fit to the measured
forces,

Figure 6.3 shows the measured force spectrum and the force
spectrum calculated using the linearized version of the Morison
equation (equation 2.47). There is excellent agreement between the
measured and calculated spectra. The linearization does not see;
to alter the Morison equation spectrum drastically. This was

expected because figures 4.65 and 4.66 showed that linearization
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provided an excellent fit to the nonlinear drag term. The largest
difference is about 3% and occurs at the spectral peak frequency.
The same result can be observed in figure 6.4 for the upper level.

Figures 6.5 and 6.6 show the measured force spectra and the
force spectra calculated by neglecting the drag term. Very little
difference can be observed between the calculated inertia spectrum
and the total Morison spectrum (figure 6.1) for the lower level.
At the upper level the difference is more noticeable at the
spectral peak frequency. This was expected, since at this level
the drag is more significant.

Figures 6.7 and 6.8 show the measured spectra and the
calculated spectra based on equation 2.48. For the lower level the
forces calculated using linear wave theory are in excellent
agreement with the measured forces. The result for the upper level
based on linear wave theory still provides a reasonable estimate
for the total measured forces but the difference between the

measured and calculated spectra is in this case more noticeable.

6.2 Estimates of the Forces Based on the Morison Equation with the
Lighthill Correction Term

Least squares analyses were also performed to obtain the drag
and inertia coefficients when the Lighthill correction term was
included in the calculation of the forces. The coefficients
obtained from the analyses were Cd = 0.2341, Cm = 1.8343 for the
lower level and Cd = 0.5403, Cm = 2.0587 for the upper level. When
these results are compared to the values obtained by using the

Morison equation alone it can be seen that the Lighthill correction

BN
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term has very little effect on the magnitudes of the drag and
inertia coefficients. This result would indicate that the
Lighthill correction is not a significant proportion of the total
force. This is also borne out by the measured force spectra (full
line) and the calculated force spectra (dashed lines) shown in
figure 6.9 for the lower level and figure 6.10 for the upper level.
Indeed, it can be seen that the addition of the Lighthill
correction does not change significantly the calculated spectra
with respect to their values based on the Morison equation with no
correction (see figures 6.1 and 6.2).

In conclusion it is seen that the Morison equation provided
an excellent model for the Delft measured forces. The inclusion
of the Lighthill correction term made very little difference to

both the force coefficients and the calculated force spectra.
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CHAPTER SEVEN

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions

This work presented theoretical and experimental studies of
hydrodynamic forces on submerged, slender circular cylinders. The
study was undertaken to obtain an improved model for the
hydrodynamic forces. Such a model is needed because the extent to
which dynamic amplification of tension leg platform motions is
significant depends on the hydrodynamic damping supplied by the
fluid-structure interaction. Sir James Lighthill argued that the
hydrodynamic damping might be estimated incorrectly if the
hydrodynamic forces are described by the Morison equation. He
developed the outline of a theory for the estimation of a nonlinear
correction term of potential origin, that could affect the
estimation of the viscous force. This work investigates the
significance of the Lighthill correction in quantitative terms and
its effect on the viscous and total force on the cylinder.

For non-surface piercing structural elements the Lighthill
correction is associated with the dynamic pressure calculated from
the Bernoulli equation. The Lighthill correction is derived for
the condition of finite water depth in Chapter Three.

Three sets of data were obtained for the analysis. Only two
of the sets were sufficiently complete to allow a conclusive
analysis to be performed. These two sets of data comprised in-line

velocities, in-line forces, transverse forces and wave elevation
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for both periodic and random wave flows. The periodic data and the
random data weré obtained from the Naval Civil Engineering
Laboratory (NCEL) and the Delft Hydraulics Laboratory (DHL),
respectively.

For the periodic data it was found that both the drag and
inertia coefficients had a strong dependence on the Keulegan-
Carpenter number. The ranges of the Reynolds number and the 8
parameter were limited. At low Keulegan-Carpenter numbers the
inertia coefficients based on the measured flow properties were
greater than the ideal potential flow wvalue of 2.0. The
experimental values were also greater than the theoretical values
predicted by Sarpkaya (1986) and Bearman et al. (1985).

For both the periodic data and the random data the Morison
equation yith time invariant coefficients fits the data well over
the range of conditions covered in these tests. For the periodic
data the Morison equation provided an equally good fit over the
whole range of Keulegan-Carpenter numbers investigated. This
result is at variance with most other experimental work which has
found that the Morison equation is less applicable in the inertia-
drag regime (KC > 6) where fractional shedding of vortices occurs.

For both the periodic and the random data the Lighthill
correction did not improve the performance of the Morison equation
significantly and did not alter the drag coefficient to any
significant extent for either set of data. For most of the periodic
data tests the Morison equation without the Lighthill correction

provided a better fit to the measured forces.
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A correction for flow separation effects of the type described
by Sarpkaya (198la, 1981b) is also considered. The analysis of the
periodic data showed that the difference between the measured and
calculated forces (the residue) did not have the third and fifth
harmonics of the force being dominant that were identified for
one-dimensional flows by both Keulegan and Carpenter (1958) and
Sarpkaya (1981). Instead, the best fit for the NCEL data was
observed Qhen the residue comprised the second and third harmonics
of the force. A significant improvement over the Morison equation
was thus achieved but because all coefficients in the correction
terms were obtained by a least squares analysis they are only
applicable to the NCEL data and cannot be generalized to other
types of flow. Conversely, it was found that the universal
constants in Sarpkaya’'s four term Morison equation, which were
obtained for ome-dimensional flow were not valid for the NCEL

tests.

7.2 Future Research

Areas of future research identified in the course of this
investigation are:

1) The theoretical estimation of the drag and inertia
coefficients at low Keulegan-Carpenter number flows of interest in
ocean engineering. A cylinder immersed in an oscillatory flow
experiences a force opposing the motion which is usually considered
to be composed of three parts, due to
i) the inertia of the accelerating flow (of potential origin),

ii) the influence of the viscous boundary layer and
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iii) separation of the boundary layer which leads to the shedding
of vortices. This third part is negligible for flows with low
Keulegan-Carpenter numbers.

The estimation of the drag and inertia coefficients in this
low Keulegan-Carpenter number case involves analytical modeling of
the nonlinear boundary layer equation (equation 2.15). At present
the theory has only been applied to high frequency flows where the
boundary layer equation can be linearized. This linearization has
also been used in the work of Sarpkaya (1986) and Bearman et al.
(1985) even though it appears that it is not acceptable in the case
of ocean flows. The investigation outlined here is expected to
explain the large values of the inertia coefficient Cm, and to
provide realistic information on the values of the drag coefficient
Cd, for low Keulegan-Carpenter numbers.

2) The analysis of pressure distributions around a vertical
cylinder immersed in a wave flow. Theoretical expressions and
experimental data (such as are provided by the Delft measurements)
may be used to investigate pressure distribution patterns inherent
in various models and in the data and possible differences between
theory and experiment.

3) A statistical analysis of random wave flow data aimed at
finding an optimal force model. This can be attempted by using an
all-possible-subsets regression analysis on wvarious plausible

models, for example by using the Mallows Cp method.
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